
Ch 11. Pricing American Options by Monte Carlo Simulation

I. Strengths and Weaknesses of Monte Carlo Simulation

II. The Pioneer

III. Stratified State Methods

IV. Simulated Tree Method

V. Least-Squares Approach

• This chapter introduces the methods to price American options with the Monte Carlo
simulation. The introduced methods include Tilley (1993), Barraquand and Martineau
(1995), Raymar and Zwecher (1997), Broadie and Glasserman (1997), and Longstaff and
Schwartz (2001). Among these models, the most important method is the least-squares
method proposed by Longstaff and Schwartz (2001).

I. Strengths and Weaknesses of Monte Carlo Simulation

• The advantage of the Monte Carlo simulation method is to deal with path dependent
options. The superiority of the Monte Carlo simulation method is that it can simulate the
underlying asset price path by path, calculate the payoff associated with the information
for each simulated path, e.g., Smax or Save, and utilize the average discounted payoff
to approximate the expected discounted payoff, which is the value of path-dependent
options.

� However, the advantage of the Monte Carlo simulation method causes the difficulty to
apply it to pricing American options. This is because it is difficult to derive the holding
value (or the continuation value) at any time point t based on one single subsequent path.

� Someone may try to apply the multiple-tier Monte Carlo simulation to estimating the
holding value and thus price American options, but this method is infeasible for a large
number of early exercise time points, n.

� Note that in the tree-based model, the holding value for each node is determined
through e−r∆t(puCu+pdCd), where Cu and Cd are the option values corresponding to the
upper and lower branches and they already take the possible early exercise in the future
into account.
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II. The Pioneer

• Tilley (1993): the first one trying to price American options by proposing a bundling
algorithm based on simulation.

� The main idea is to devise a method based on the Monte Carlo simulation to decide
the early exercise boundary.

� Once the early exercise boundary is determined, an American option can be viewed
as a knocked-and-exercised option. As long as the simulated path touches the early
exercise boundary, the payoff is, taking calls for example, max(St−K, 0). If the simulated
path never touches the early exercise boundary before the maturity date, the payoff for
that simulated path will be max(ST − K, 0). The option value can be expressed as
1
n

∑
i

e−rτ max(Siτ −K, 0), where τ represents the optimal exercise time for each path.

Figure 11-1
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� Five steps to decide the early exercise boundary and thus price American options:

(i) Simulate N stock paths, S(j, t), where t is the time point and j is the index for stock
paths. In addition, each path is partitioned into n subperiods and thus ∆t = T/n.

(ii) Decide the payoff of each stock path on the maturity date, T , i.e., V (j, T ) = max(S(j, T )
−K, 0).
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(iii) For t = (n− 1)∆t to 0,

(1) Sort N paths with respect to the values of S(j, t) from the minimum to the maxi-
mum.

(2) Classify all paths into Q groups and q is the index for groups with the values to be
1, . . . , Q. So, there are N

Q = M paths in each group.

(3) For each group, estimate a holding value H(q, t) = e−r∆t 1
M

∑
path j

∈ group q

V (j, t+ ∆t).

(4) For each path j at the time point t, the exercise value = E(j, t) = max(S(j, t) −
K, 0), and define

x(j, t)=

{
1 if E(j, t) ≥ H(q, t)
0 if E(j, t) < H(q, t)

.

(5) Decide the “sharp” boundary (the early exercise boundary), as illustrated in Figure
11-2 on the next page.

(6) Define y(j, t)=

{
1 for j ≥ j∗(t)
0 for j < j∗(t)

.

That is, for paths below or equal to j∗(t), it is optimal to be early exercised. Hence the
value of V (j, t) can be decided as follows. For y(j, t) = 1, V (j, t) = max(S(j, t)−K, 0),
and for y(j, t) = 0, V (j, t) = e−r∆t · V (j, t + ∆t). The value of V (j, t) is prepared for
the backward induction process at the previous time point t−∆t.

(iv) For each path, find the first time point such that y(j, t) = 1, which is the early
exercise point for that path. In addition, along that path, define the variable I(j, t) to be
1 at that time point and 0 for other time points, i.e.,

I(j, t)=

{
1 if y(j, t) = 1 and y(j, s) = 0 for all s < t
0 o/w

.

If there is no y(j, t) = 1 along the stock path, set I(j, T ) to be 1 on the maturity date.

(v) Since I(j, t) indicates the early exercise time point for each path, an American option
can be priced as C = 1

N

∑
path j

∑
all t

e−rt · I(j, t) ·max(S(j, t)−K, 0).
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Figure 11-2
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Sort S(j,t) 
from the 
minimum to 
the maximum. 
So, with the 
increase of the 
index j, S(j,t) 
as well as 
E(j,t) rises.

e.g., H(q,t) = 0.3 for this group

Boundary j*(t):
for the sequence of x(j,t) 
below these three ones, the 
maximum number of 
successive zeros is only two. 
So, choose the index j for the 
uppermost one to be j*(t)

e.g., H(q,t) = 2 for this group
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III. Stratified State Methods

• Barraquand and Martineau (1995)

They proposed the method of Stratified State Aggregate along the Payoff (SSAP) to
price American rainbow option, Cτ = max(max(S1τ , S2τ , . . . , Snτ ) −K, 0), in which the
stock price paths are sorted according to a state variable (rather than the stock price) to
determine payoff. Here the method of SSAP is illustrated for pricing American arithmetic
average option, Cτ = max(Save,τ −K, 0).

(i) Along each stock price path, it is necessary to record the pair of (Save,t, St) at each
time point, where Save,t (also known as the prefix average price) is the realized arithmetic
average price until t. For example,

Figure 11-3
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(ii) For each time point, sort stock price paths according to the prefix average price and
next classify them into 8 groups. In addition, calculate the transition probability Pij by
counting the paths from i-th group at time t to j-th group at time t+ ∆t.

Figure 11-4

The pij in the probability matrix represents the transition  

probability from group i at t to group j at t+Δt  

pij

t t t 

(iii) For T = n∆t, the payoff for each path is max(Save,T −K, 0). In addition, calculate
the average of the payoffs of all paths for each group, and the result is treated as the
option value for this group. (In this algorithm, the optimal exercise boundary is
determined group by group.)
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(iv) For t = (n− 1)∆t to 0,

For each group i, calculate

(1) the exercise value for this group, which is the average of the exercise values of

all paths in this group.

(2) the holding value for this group, which is e−r∆t
8∑
j=1

pij(option value of the

group j at t+ ∆t).

If (1) ≥ (2), the option value for this group = (1) (exercise)

(1) < (2), the option value for this group = (2) (hold)

(v) Continue the process until t = 0, since there is only one node, the option value for
this node will be the value for the American arithmetic average option.

• Problems for the model in Barraquand and Martineau (1995).

Since it classifies paths into groups according to the prefix average price, the approxima-
tion for the exercise value of each group is acceptable because the exercise value
highly depends on the prefix average price. However, the approximation for the holding
value is not accurate, so it is possible to make wrong early exercise decisions.

� For example, paths i and j are with the same prefix arithmetic price but with different
stock price at time point t.

Figure 11-5

path i
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t

(110,125)

(110,60)

K=100

According to the BM’s model, paths i and j will be classified into the same group and
they will be early exercised or held together. However, the option holder, in fact, will
make different early exercise decisions for these two paths.

For path i: the arithmetic average price will become lower, so it is optimal to early

exercise at time point t to earn 110− 100 = 10.

For path j: the arithmetic average price will become higher, so it could earn more

profit to postpone the exercise.
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• Raymar and Zwecher (1997) fix the problems in the BM’s model.

The main idea of RZ’s model is to introduce more factors to classify paths into different
groups. For arithmetic average options, it is possible to employ the stock price as an
additional factor to classify paths. More specifically, paths are sorted and classified into 4
groups according to the arithmetic average price and then each group are further divided
into 2 groups according to the stock price.

Figure 11-6
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� It is possible to increase the number of groups, but more groups mean less paths in
each group given the same number of simulated stock paths, which in turn influence the
accuracy of the approximations for the holding and exercise values for each group. In
Raymar and Zwecher (1997), in order to show the superiority of this classification, they
maintain the same number of simulated stock paths and the number of groups is fixed to
be 8.

• Raymar and Zwecher (1997) also propose a three-phase simulation framework to avoid the
foresight bias problem. The foresight bias appears if the exercise criteria is calculated
by the same simulated samples as those to determine the exercise values. During the
backward induction process, whenever the option holder makes early-exercise decisions,
he already knows some information of following stock price paths, that is helpful to make
better decision than those could be made in the real world. See page 11-9 for more
explanations of the foresight bias problem.

(i) First phase: simulate N paths and decide critical prices to separate groups.

(ii) Second phase: simulate N paths and classify paths into groups according to the critical
prices derived in (i), and then

(1) Decide the transition probabilities

(2) Perform the backward induction process in the BM’s model

(3) Record the information of whether early exercise or not for each group

(iii) Third phase: simulate N paths

(1) As long as the path i reaches the group for early exercise, exercise immediately
and derive the payoff for this path. If the path is not early exercised until the
maturity, derive the payoff for this path on the maturity date.
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(2) Discount payoffs for all paths and the take the average of these discounted payoffs
to generate the value for the American option.

IV. Simulated Tree Method

• Broadie and Glasserman (1997) propose the method of the simulated tree to price Amer-
ican options, which can derive the upper and lower bounds for American options.

� The simulated tree for stock price is as follows, which is in essence a non-recombined
trinomial tree with simulated stock prices.

Figure 11-7
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� Derive the upper bound (similar to the standard backward induction process in tree-
based models)

Figure 11-8
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∗ Since the same set of simulated sample is employed to decide exercise values and whether
it is optimal to early exercise, the foresight bias emerges, which will overestimate the
value of American options. The reason is analyzed as follows.

If the realized average return at the next time point is overestimated, i.e., larger
than r, the holding value today is overestimated as well. The option holder will
postpone the exercise to obtain higher profit, that increases the option value.

If the realized average return at the next time point is underestimated, i.e., smaller
than r, the holding value today is underestimated as well. The option holder will
early exercise the option today. This behavior also increases the option value.

∗ In a word, the foresight bias problem appears when employing the above Monte Carlo
simulation methods for pricing American options, which results overestimated American
option values and thus forms upper bounds for American option values.

∗ For tree models, because the appropriate values of p, u, and d are derived such that the
growth and volatility of the stock price equal r and σ exactly, there is no foresight bias
for tree models.
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� Derive the lower bound (to separate the random samples for calculating holding values
and making the early exercise decision)

∗ The main idea of the algorithm is as follows. For the branch j (j = 1, 2, 3), use the other
two branches to decide the expected holding value, and compare it with the exercise value
of the examined node. If it is optimal to hold the option, the option value corresponding
to the branch j is the present value of the period-end option value of the branch j.
Otherwise, the option value corresponding to the branch j is the exercise value of the
examined node.

For node B: exercise value is max(105.67− 100, 0) = 5.67

holding value option value corresponding to branch j

j = 1 1
2(0 + 8.41)e−0.05×0.5 = 4.10 5.67

j = 2 1
2(12.66 + 8.41)e−0.05×0.5 = 10.27 0 · e−0.05×0.5

j = 3 1
2(12.66 + 0)e−0.05×0.5 = 6.17 8.41e−0.05×0.5

⇒ Option value for node B is 4.62 ( =
(5.67+0+8.41e−0.05×0.5)

3 ).

For node C: exercise value is max(103.31− 100, 0) = 3.31

holding value option value corresponding to branch j

j = 1 1
2(5.47 + 0)e−0.05×0.5 = 2.67 3.31

j = 2 1
2(0 + 0)e−0.05×0.5 = 0 3.31

j = 3 1
2(0 + 5.47)e−0.05×0.5 = 2.67 3.31

⇒ Option value for node C is 3.31 (= 3.31+3.31+3.31
3 ).

For node D: exercise value is max(85.99− 100, 0) = 0

holding value option corresponding to branch j

j = 1 1
2(8.07 + 0)e−0.05×0.5 = 3.94 0 · e−0.05×0.5

j = 2 1
2(0 + 0)e−0.05×0.5 = 0 8.07e−0.05×0.5

j = 3 1
2(0 + 8.07)e−0.05×0.5 = 3.94 0 · e−0.05×0.5

⇒ Option value for node D is 2.62 (= 0+8.07e−0.05∗0.5+0
3 ).

For node A: exercise value is max(100− 100, 0) = 0

holding value option value corresponding to branch j

j = 1 1
2(3.31 + 2.62)e−0.05×0.5 = 2.89 4.62e−0.05×0.5

j = 2 1
2(4.62 + 2.62)e−0.05×0.5 = 3.53 3.31e−0.05×0.5

j = 3 1
2(4.62 + 3.31)e−0.05×0.5 = 3.87 2.62e−0.05×0.5

⇒ Option value for node A is 3.43 (= 4.62e−0.05∗0.5+3.31e−0.05∗0.5+2.62e−0.05∗0.5

3 ).
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Figure 11-9

4.62

3.31

2.62

12.66

0

8.41

0

5.47

0

8.07

0

3.43

0

A

B

C

D

∗ For the above pricing approach, it does not commit the foresight bias.

∗ However, the early exercise decisions generated by the above pricing approach are nei-
ther optimal. The suboptimal early exercise decisions result in a undervalued pricing
result than the true American option value. Moreover, this lower bound should be higher
than the corresponding European option value. This is because among all early exercise
opportunities, a higher exercise value in general leads to a higher probability of early exer-
cise. Accumulation of these advantages should generate a option value higher than that of
the corresponding European option, which does not have any early exercise opportunity.
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V. Least-Squares Approach

• Longstaff and Schwartz (2001), “Valuing American Option by Simulation: A Simple
Least-Squares Approach,” Review of Financial Studies 14, pp. 113–147.

� A numerical example for pricing American puts is employed to illustrate how this
approach works. Suppose S0 = 1, K = 1.1, T = 3yrs, r = 0.06, q = 0, and ∆t = 1yr.
The simulated 8 stock prices are listed in the following table.

Stock Price t = 0 t = 1 t = 2 t = 3

path 1 1 1.09 1.08 1.34
path 2 1 1.16 1.26 1.54
path 3 1 1.22 1.07 1.03
path 4 1 0.93 0.97 0.92
path 5 1 1.11 1.56 1.52
path 6 1 0.76 0.77 0.90
path 7 1 0.92 0.84 1.01
path 8 1 0.88 1.22 1.34

� Step 1: Determine the payoff for each path at maturity (t = 3).

payoff
(t = 3)

path 1 0
path 2 0
path 3 0.07
path 4 0.18
path 5 0
path 6 0.20
path 7 0.09
path 8 0
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� Step 2: For t = 2, the path-wise holding values are calculated as the present values
of the option values at the next time point, i.e., at t = 3. The path-wise holding and
exercise values at t = 2 are listed as follows. Note that due to the foresight bias, the
path-wise holding value cannot be used to determine the early exercise decision.

exercise value (EV ) path-wise holding value (HV ) payoff
(t = 2) (t = 2) (t = 3)

path 1 0.02 0 0
path 2 0 0 0
path 3 0.03 0.0659=0.07·e−0.06 0.07
path 4 0.13 0.1695=0.18·e−0.06 0.18
path 5 0 0 0
path 6 0.33 0.1884=0.2·e−0.06 0.20
path 7 0.26 0.0848=0.09·e−0.06 0.09
path 8 0 0 0

∗ For in-the-money paths at t = 2, i.e., paths 1, 3, 4, 6, and 7, decide whether or not it is
optimal to early exercise for these paths. The main idea to achieve this goal is to employ
a regression equation, e.g., HV = a + bS + cS2 + υ, where S is the stock price at t = 2
for paths 1, 3, 4, 6, and 7, and υ is the white noise and υ ∼ ND(0, η2), to estimate the
expected holding value (conditional on S), E[HV ] = â+ b̂S + ĉS2.

for HV = a+ bS + cS2 + υ E[HV ] EV

path 1 0 1.08 1.082 0.0369 > 0.02
path 3 0.0659 1.07 1.072 â = −1.070 0.0461 > 0.03

path 4 0.1695 0.97 0.972 ⇒ b̂ = 2.983 ⇒ 0.1176 < 0.13
√

path 6 0.1884 0.77 0.772 ĉ = −1.813 0.1520 < 0.33
√

path 7 0.0848 0.84 0.842 0.1565 < 0.26
√

∗ For paths 4, 6, and 7, since EV > E[HV ], the option values for these paths at t = 2
are the corresponding exercise values. In addition, set the option value for these paths at
the subsequent time point, i.e., t = 3 at the current step, to be zero. For other paths, the
option values are the corresponding path-wise holding values, HV . (Setting the option
value to be zero is not necessary, but this step can enhance the understanding of the
optimal exercise time point for each path.)
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� Step 3: For t = 1, the path-wise holding values are calculated as the present value of
the option values at the sebsequent time point, i.e., at t = 2. The path-wise holding and
exercise values at t = 1 are listed in the following table.

EV path-wise HV payoff payoff
(t = 1) (t = 1) (t = 2) (t = 3)

path 1 0.01 0 0 0
path 2 0 0 0 0
path 3 0 0.06208=0.0659·e−0.06 0.0659 0.07
path 4 0.17 0.1224=0.13·e−0.06 0.13 0
path 5 0 0 0 0
path 6 0.34 0.3108=0.33·e−0.06 0.33 0
path 7 0.18 0.2449=0.26·e−0.06 0.26 0
path 8 0.22 0 0 0

∗ For in-the-money paths at t = 1, i.e. paths 1, 4, 6, 7, and 8, perform the regression
analysis to estimate the expected holding value, E[HV ].

for HV = a+ bS + cS2 + υ E[HV ] EV

path 1 0 1.09 1.092 0.0139 > 0.01
path 4 0.1224 0.93 0.932 â = 2.038 0.1092 < 0.17

√

path 6 0.3108 0.76 0.762 ⇒ b̂ = −3.335 ⇒ 0.2866 < 0.34
√

path 7 0.2449 0.92 0.922 ĉ = 1.356 0.1175 < 0.18
√

path 8 0 0.88 0.882 0.1533 < 0.22
√

∗ For paths 4, 6, 7, and 8, since EV > E[HV ], the option values for these paths at t = 1
are the corresponding exercise values. In addition, set the option value for these path at
the subsequent time point, i.e., at t = 2, to be zero. For other paths, the option values
are the corresponding path-wise holding values, HV . See the following table.

t = 1 t = 2 t = 3

path 1 0 0 0
path 2 0 0 0
path 3 0.06208 0.0659 0.07
path 4 0.17 0 0
path 5 0 0 0
path 6 0.34 0 0
path 7 0.18 0 0
path 8 0.22 0 0
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� Step 4: The American put option value at t = 0:

1
8(0 + 0 + 0.06208e−0.06 + 0.17e−0.06 + 0 + 0.34e−0.06 + 0.18e−0.06 + 0.22e−0.06)

= 0.1144 > 1.1− 1.0.

(The early exercise value today is 0.1, which is smaller than the option value today, 0.1144,
so it is not optimal to early exercise today.)

� Moreover, Longstaff and Schwartz (2001) also apply the (weighted) Laguerre polyno-
mials as the basis function.

B0(S) = exp(−S/2),
B1(S) = exp(−S/2)(1− S),
B2(S) = exp(−S/2)(1− 2S + S2/2),

...

Bj(S) = exp(−S/2)e
S

j!
dj

dSj
(Sje−S).

Since Bi and Bj are orthogonal functions over [0,∞), the independency feature of or-
thogonal functions can satisfy the need for the regression analysis that the explanatory
variables should be independent.

� The regression equation may not be HV = a + bS + cS2 + υ. There is no common
way to decide the regression equation and the explanatory variables in it. Longstaff
and Schwartz (2001) suggest to employ any relevant variables into consideration in the
regression equation. Furthermore, the degree of the polynomial functions for variables is
also uncertain. For instance, in this case, it is possible to consider the regression equation
to be HV = a+ bS + cS2 + dS3 + υ.

� In Longstaff and Schwartz (2001), they examine the performance of the least-squares
approach for many different options, including the plain vanilla put, the average option,
the rainbow option, etc. The accuracy of this least-squares approach is examined by
comparing with the pricing results based on lattice models.

� Since there is no general rule to decide the relevant variables and the degree of the
polynomial functions, it is never known whether the authors adopt the trial and error
method to decide the relevant variables and the degree of the polynomial functions to
make the pricing results of the least-squares approach be close to those from lattice
models.

� The aim to develop the least-squares approach should be as follows: for newly designed
exotic American options, since there is no lattice models or it is difficult to develop a
lattice model to price that options, the best way is to resort to the least-squares approach.
However, without correct benchmark answers from lattice models, it is impossible to
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make sure that whether we take sufficient relevant variables or degree for polynomial
function into consideration, which is the most serious problem for applying the least-
squares approach.

• Comparisons with previous simulation-based models.

Figure 11-10
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holing value within the group, and then compare this average 
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For previous models, all paths are sorted with the early exercise 

payoff, e.g., Barraquand and Martineau (1995), so the early exercise 

payoffs, EVt, for paths in the same group should be very close. 

Therefore, to estimate the average holding value group by group is 

approximately equivalent to estimate E[HVt|EVt] if the number of 

groups is large enough . Since EVt is highly correlated with St via 

EVt=max(K - St,0) for American puts, this process is similar to 

estimating E[HVt|St], and it is also the reason to consider the 

regression of HVt over St in Longstaff and Schwartz (2001).
K

��� = ����� + ����� 

⇒ ��+Δ� = �� + ��� = �� + ����� + ����� = �1 + ����� + ���√��� 

Consider the time point one period prior to the maturity date

������ = �−�Δ����� − ��+Δ�+� = �−�Δ�� ��� − �1 + ����� − ���√����+� 

vs. ������ = �� + !�� + "��2 + $�, where $~,-�0, /2 

• Is it appropriate to consider only in-the-money paths? For pricing convertible bonds,
since the holder can convert the bonds they own into stock shares even in marginal out-
of-the-money cases (the stock price is slightly lower than the conversion price). That is,
for both in-the-money and out-of-the-money paths, we need to know the holding value to
decide whether it is optimal to convert.

� The first solution is to distinguish in-the-money and out-of-the-money paths and con-
duct the regression for each of them separately. The second solution is to conduct only one
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regression for all paths. According to the results of my experiments, the second solution
provides more accurate and better convergent convertible bond values.

• Relevant variables in the regression of the LSM for pricing different options:

�When pricing average options, it is necessary to consider both St and the prefix average
price. Otherwise, you will make a mistake like Barraquand and Martineau (1995) did.
The solution proposed by Raymar and Zwecher (1997) to fix this problem is equivalent
to include the prefix arithmetic average price into the regression equation.

� To improve accuracy for pricing average options, it is suggested to include (St× prefix
average price) as an additional explanatory variable in the regression of the LSM.

� For arithmetic average reset options, it is necessary to consider St, the current strike
price Kt, the prefix arithmetic average price after the previous reset date At, and the
products of any two of these three variables in the regression of the LSM.

� For lookback options, it is necessary to consider St, the updated Smax, and the product
of them in the regression of the LSM.

� For Parisian options, in addition to St, maybe the sojourning time over the barrier
should be considered, because this information will influence the possibility of knocking
in or out, and thus affect the likelihood of early exercise. In addition, the product of
these two variables is also suggested to be included as an additional explanatory variable
in the regression of the LSM.

• Many papers improve the LSM by using more advanced regression methods, such as ridge
regression (Tompaidis and Yang, 2014), least absolute shrinkage and selection operator
(LASSO) (Tompaidis and Yang, 2014; Chen et al., 2019), weighted least squares regression
(Fabozzi et al., 2017; Ibáñez and Velasco, 2018), and non-parametric kernel regression
(Belomestny, 2011; Ludkovski, 2018).
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