
Ch 9. Lookback Option

I. Analytic Solutions and Monte Carlo Simulation for Lookback Options

II. Pricing Lookback Options with the Binomial Tree

III. Finite Difference Method for Path Dependent Options

IV. Reset Option

Appendix A. PDEs for Path Dependent or Independent Options

• This chapter introduces the analytic solution, Monte Carlo simulation, binomial tree
model, and finite difference method to price lookback options. The application of the
finite difference method to price various types of path dependent options is also discussed.
Finally, the pricing method for the reset option, which is equal to a lookback option with
a limited set of sampling time points, will be introduced.

I. Analytic Solutions and Monte Carlo Simulation for Lookback Options

• European lookback call: cT = max (ST − Smin,T , 0), where Smin,T = min
0≤τ≤T

Sτ .
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∗ If t = 0, then St = S0 and Smin,t = Smin,0 = S0.
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∗ Given a simplified condition where t = 0 and q = 0,

c0 = e−rTEQ[max(ST − Smin,T , 0)]

= e−rTEQ[ST − Smin,T ]

= e−rTEQ[ST ]− e−rTEQ[Smin,T ]

= S0 − S0e
−rTEQ[Smin,T

S0
].

∗ Harrison (1985) derives the formula of the following joint cumulative distribution func-

tion.

PQ = PQ(ln ST
S0
≥ x, ln Smin,T

S0
≥ y) given y ≤ 0 and y ≤ x.

By setting x to be y, we obtain

PQ = PQ(ln ST
S0
≥ y, ln Smin,T

S0
≥ y) = PQ(ln Smin,T

S0
≥ y).

Finally, the probability density function of ln Smin,T

S0
can be derived as

∂(1−PQ)
∂y .

• As to the pricing formulas for a European lookback put with the payoff to be max(Smax,T−
ST , 0), where Smax,T = max0≤u≤T Su or other variations of lookback options, please refer
to Conze and Viswanathan (1991), “Path Dependent Options: The Case of Lookback
Options,” Journal of Finance 46, pp.1893–1907.

• Note that the above formula is valid only when the lookback mimimum (or maximum) is
sampled continuously. However, the continuously sampling is not infeasible in practice.
(Strictly speaking, even the quotations of the stock price are not continuous.) It is
common to adopt the daily sampling rule in financial markets.

• It is straightforward to apply the Monte Carlo simulation to pricing discretely-sampling
lookback option, whose value is the average present value of the payoff of the lookback
option associated with each simulated path. When the sampling frequency increases, the
results of the Monte Carlo simulation can approach the theoretical value based on the
above analytic solution.
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II. Pricing Lookback Options with the CRR Binomial Tree

• American lookback put with

Payoffτ = max(Smax,τ−Sτ , 0), where Smax,τ = maxSu, for u = 0,∆t, 2∆t, ..., τ .

Suppose T = 0.25 year (3 months),

S0 = Smax,0 = 50,

r = 0.1, q = 0, σ = 0.4,

∆t = 1
12 year (1 month),

⇒

 u = 1.1224
d = 0.8909
p = 0.5073

.

Figure 9-2
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Figure 9-3 This example is from Ch. 26 in Hull (2011)
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Algorithm:

(i) Build the S-tree, and record possible Smax’s for each node. The forward-tracking

method to record possible Smax’s is explained as follows. For a node with the stock price

St, inherit Smax’s from its parents:{
1. If Smax from parents ≥ St ⇒ Insert this Smax into its Smax-list

2. If Smax from parents < St ⇒ Ignore Smax and insert St into its Smax-list
(ii) For each terminal node, decide the payoff for every Smax of each terminal node.

(iii) Backward induction: see Figure 9-4.

Figure 9-4
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III. Finite Difference Method for Path Dependent Options

• In Chapter 5, I introduce the finite difference method (FDM) to price plain vanilla options.
In fact, the FDM is a general approach to price various types of path dependent options.

(1) dS
S = (µ− q)dt+ σdZ.

(2) Define the path dependent variable (路徑相依變數)

I(T ) =
∫ T

0
f(S, τ)dτ ,

or I(t) =
∫ t

0
f(S, τ)dτ ,

or dI = f(S, t)dt.∥∥∥∥∥∥
vanilla option: f(S, t) = 0, I(t) = I(T ) = 0.

arithmetic average option: f(S, t) = S, I(t) =
∫ t

0
S(τ)dτ.

geometric average option: f(S, t) = ln(S), I(t) =
∫ t

0
ln(S(τ))dτ.

Thus, the option value V (S(t), I(t), t) is the function of S, I, and t.

(3) Payoff at T : P (S(T ), I(T ), T )∥∥∥∥∥∥
vanilla call: P (S(T ), I(T ), T ) = max(S(T )−K, 0).
arithmetic average call: P (S(T ), I(T ), T ) = max(I(T )/T −K, 0).
geometric average call: P (S(T ), I(T ), T ) = max(exp(I(T )/T )−K, 0).

(4) Construct a riskless portfolio π = −V (S, I, t) + ∂V
∂S S.

According to the Itô’s lemma in the case of three variables,

dV = (∂V∂t + ∂V
∂S (µ− q)S + 1

2
∂2V
∂S2 σ

2S2 + ∂V
∂I f(S, t))dt+ (∂V∂S σS)dZ

⇒ dπ = −dV + ∂V
∂S dS + q(∂V∂S Sdt)

= −(∂V∂t + 1
2σ

2S2 ∂2V
∂S2 + f(S, t)∂V∂I − q

∂V
∂S S)dt

= rπdt

⇒ ∂V
∂t + 1

2σ
2S2 ∂2V

∂S2 + f(S, t)∂V∂I + (r − q)S ∂V∂S − rV = 0.

Apply the finite difference method on the S-I-t space to solve V (S, I, t) and the option
value today V (S(0), I(0), 0). Since there are three dimensions, the backward induction is
conducted from T to 0 along a rectangular solid. More specifically, for each time point
ti, the option values on the grids of an S-I plane are solved. When ∆S, ∆I, and ∆t
approach 0, option values converge to the results based on the continuous sampling rule.
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• Appendix A discusses the scenarios to use the above PDE or the classical Black-Scholes
PDE shown in Ch. 2 for pricing path dependent or independent options.

• However, for most contracts in the real world, the path dependent variable I is not
sampled continuously, but sampled discretely. For example, the payoffs of arithmetic
average options and lookback options depend only on the daily or weekly closing prices.
Next I will introduce how to employ the finite difference method to deal with discretely-
sampling path dependent options.

• In the case of discrete sampling, the value of I changes only at sampling points.

Figure 9-5

I(t)

t0 t1 t2 …    tn T



0

t

• For the time points other than the sampling points, the value of I maintains the same,
i.e., dI = 0, which implies f(S, t) = 0 and thus

∂V
∂t + 1

2σ
2S2 ∂2V

∂S2 + (r − q)S ∂V∂S − rV = 0,

which is independent of I. However, because the payoff depends on the value of I, it is
still necessary to apply the finite difference method to solving the above PDE in the S-I-t
space.

9-6



• At updating (or sampling) points, since dI 6= 0, an updating rule of I is considered.

Case 1: When ti ≤ t < ti+1, I(t) = I(ti) (for time points that are not sampling points)

Case 2: When t = ti+1, I(ti+1) = U(S(ti+1), I(ti), ti+1) (for sampling time points)

Figure 9-6 Illustrating how the updating rule works
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0

• The updating rule for arithmetic average options and lookback options∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

For arithmetic average options: Define Aj = 1
j

∑j
i=1 S(ti).

⇒ A1 = S(t1)

⇒ A2 =
S(t1)+S(t2)

2 = 1
2A1 + 1

2S(t2)
...

⇒ Aj = j−1
j Aj−1 + 1

jS(tj).

↗ ↘
previous average is with stock price on the sampling
the weight (j − 1)/j date is with the weight of 1/j

(The general rule is to express the evolution of the path dependent variable as a funcion
of the current stock price and the previous value of the path dependent variable until the
last sampling point.)

(The information of the current time point j is employed to decide the weight coefficients.)

For lookback options: Define I(tj) = max(S(t1), . . . , S(tj)).
⇒ I(t1) = S(t1)

I(t2) = max(S(t2), S(t1)) = max(S(t2), I(t1))
I(t3) = max(S(t3), S(t2), S(t1)) = max(S(t3), I(t2))
...
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• During the backward induction process of the finite difference method, employ the partial
differential equation for dI = 0 for non-sampling time points, i.e., perform the backward
induction based on ∂V

∂t + 1
2σ

2S2 ∂2V
∂S2 + (r − q)S ∂V∂S − rV = 0. However, there is a special

mapping rule to deal with the option values on sampling points:

V (S(ti), I(ti−1), t−i ) = V (S(ti), I(ti), t
+
i ).

� Time points t−i and t+i indicates the same time point ti actually. You can imagine that
there are two surfaces of the S-I plane at the time point ti, and there is a relationship
between the option values on the different surfaces of the S-I plane at that time point.

� The relationship can be understood as mapping the option value of I(t−i ) = I(ti−1)
being equal to the option value of I(t+i ) = I(ti) given the same value of S(ti).

• The mapping process for each combination of (S(ti), I(ti−1)) at sampling points ti:

Step (i):. Based on the updating rule U(S(ti), I(ti−1), ti) = I(ti), and known values of
I(ti−1), S(ti), and i, I(ti) can be solved first.

Step (ii):. The option value of the node (S(ti), I(ti−1), t−i ) is assigned to equal the option
value of the node (S(ti), I(ti), t

+
i ).

• For the steps (i) and (ii) and taking lookback options for example, suppose the option
payoff at maturity depends on the maximum of the stock prices at t1, t2, t3, t4, and t5.

Case 1. When the backward induction proceeds to t5, suppose the goal is to find the
option value V (51, 50, t−5 ), where S(t5) = 51, I(t4) = 50.

� Since I(t5) = max(I(t4),S(t5)), we can derive I(t5) = 51, and the option value of
V (51, 50, t−5 ) is assigned to be the same as the option value of V (51, 51, t+5 ).

Case 2. When the backward induction proceeds to t5, suppose the goal is to find the
option value V (50, 51, t−5 ), where S(t5) = 50, I(t4) = 51.

� Since I(t5) = max(I(t4),S(t5)), we can derive that I(t5) is still 51 after the
sampling point t5, and the option value of V (50, 51, t−5 ) is assigned to be the same
as the option value of V (50, 51, t+5 ).

• For the steps (i) and (ii) and taking arithmetic average options for example, suppose the
option payoff at maturity depends on the average stock prices at t1, t2, t3, t4, and t5.

When the backward induction proceeds to t5, suppose the goal is to find the option value
V (50, 49, t−5 ), where S(t5) = 50, A(t4) = 49.

� Since A(t5) = 4
5A(t4) + 1

5S(t5), we can derive A(t5) = 49.2, and the option value
of V (50, 49, t−5 ) is assigned to be the same as the option value of V (50, 49.2, t+5 ).
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• If there is no such node (50, 49.2, t5), apply the linear interpolation to derive the option
value for (S(t5), A(t5), t5) = (50, 49.2, t+5 ) based on the neighboring two nodes, e.g., node
(50, 49, t+5 ) and node (50, 50, t+5 ).

• In summary, three processes that should be implemented at each sampling point:

1. It is necessary to allocate a 2-dimensional array for recording the option values on the
t−i surface, V (S(ti), I(ti−1), t−i ), separately.

2. For each (S(ti), I(ti−1)) on this 2-dimensional array, decide the option value V (S(ti), I(ti−1), t−i )
based on the aforementioned steps (i) and (ii).

3. Finally, replace V (S(ti), I(ti), t
+
i ), which is the result of V (S(ti), I(ti), ti) of the back-

ward induction process at ti, with V (S(ti), I(ti−1), t−i ) and continue the backward induc-
tion process.

• For American options, it is necessary to compare the option value and the exercise value,
i.e., V (S(t), I(t), t) = max(V (S(t), I(t), t), P (S(t), I(t), t)), for every node at each time
point.

• In practice, with the passage of time, investors can make better predictions about the
path-dependent variable I(ti) because partial information of the stock price is realized.
Thus, even not reaching the sampling time point ti, at which I(ti) will be updated based
on the new sampling stock price, option values still change gradually to reflect the realized
partial information.

� That means, although the updating path of I is discontinuous, the option value V is
continuous along realized paths of S and t. Figure 9-7 illustrates this argument.

Figure 9-7

t

I(t)

t

V(t)

� In the backward induction process, the option values V also exhibit the above phe-
nomenon. When V (S(ti), I(ti−1), t−i ) is derived based on the mapping (or the updating)
rule. The affect of updating I(ti) at the sampling point ti will be propagated toward
the previous sampling date over the non-sampling time points based on the backward
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induction process, i.e., the value of V (S(t), I(t), t) for t∈ [ti−1, ti) still changes to reflect
the update of I(ti).
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IV. Reset Option

• Here call options with the payoff max(ST −KT , 0) are considered for example, for which
the initial strike price is K0 and the strike price Kt is reset downward to be the prevailing
stock price at the sampling points if the prevailing stock price is lower than the prevailing
strike price.

• Reset options are similar to lookback options, but the number of reset time points is much
smaller than the number of sampling time points for lookback options. For example, if
the time to maturity is 3 months, the reset frequency for reset options may be monthly,
but the sampling frequency for lookback options may be daily or continuously.

• The pricing algorithm for reset options is very similar to that for lookback options. It is
necessary to construct a K-list for each stock price node to record possible strike prices
for that node. Also, you need to develop a backward induction method to reflect the
evolution of K appropriately.

� The first method to decide a K-list used for all nodes:

For all nodes on the binomial tree, employ both the stock prices on the final reset day
and the stock prices at the time point just prior to the final reset day to construct the
K-list. This brute-force method is to capture all possible strike prices for each node on
the binomial tree, but this method wastes too much memory space. A modification is to
compare possible strike prices with the initial strike price K0. Only the possible strike
prices smaller than the initial strike price K0 are inserted into the K-list.

Figure 9-8
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� The second method to decide a K-list used for all nodes:

Kmax is assigned to be K0, Kmin is assigned to be 0, and ∆K is the minimal tick interval
for the stock price.

Figure 9-9
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However, this method works only for the reset call, for which the strike price is reset
downward.

� The backward induction process:

(i) If i 6= reset day − 1 (i.e., from i∆t to (i+ 1)∆t, Kt will not change).

For the option value of each Km of node(i, j), simply find the option values with the same
strike price for the two descendant nodes of node(i, j).

Figure 9-10
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(ii) If i = reset day − 1 (i.e., at the next time point (i+ 1)∆t, Kt could be updated)

Figure 9-11
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First, for each Km of node(i, j),

Ku=min(Km,Su),

Kd=min(Km,Sd).

Second, find option values Vu and Vd corresponding to Ku and Kd, respectively. If there
is no such Ku (or Kd) in the descendant nodes, use the option prices corresponding to
the strike prices neighboring to Ku (or Kd) to derive a linearly interpolated option-value
estimation for Vu (or Vd).

⇒ The option value for Km of node(i, j) is V (m) = (puVu + pdVd)e
−r∆t.
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Appendix A. PDEs for Path Dependent or Independent Options

• For path independent options, Black and Scholes (1973) derive the PDE for option values
as

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − q)S∂V

∂S
− rV = 0. (1)

Given proper boundary conditions, the above PDE is used for not only implementing the
finite difference method but also developing analytic formulas to evaluate options.

• However, for path dependent options, different PDEs are employed to price options in
different cases.

� First, when one aims to derive the analytic pricing formulas for path dependent options
at t = 0, i.e., the pricing day is the issue day, one still solves the PDE in Equation (1)
rather than that shown on page 9-5. As a result, there is no role of the path dependent
variable I(0) in analytic pricing formulas. For example, there is no Smin,0 (Save,0) ap-
pearing in the pricing formula for lookback options (average options) on page 9-1 (pages
10-2 and 10-3) when t = 0. Another reason to support this argument will be discussed
later.

� Second, when one aims to derive the analytic pricing formulas for path dependent
options at t 6= 0, since the path prior to t as well as the information of I(t) is realized
and the value of I(t) apparently affects the option value, one should consider f(S, t)∂V∂I
in the PDE, i.e., one should solve the following PDE:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ f(S, t)

∂V

∂I
+ (r − q)S∂V

∂S
− rV = 0. (2)

As a result, I(t), such as Smin,t or Save,t, will appear in the the analytic pricing formulas
for path dependent options, e.g., Smin,t for lookback options on page 9-1.

� Third, when implementing the finite difference method, since one need to solve option
values for nodes at t 6= 0, one should consider f(S, t)∂V∂I in the PDE, i.e., one should solve
the PDE in Equation (2).

• Why to employ the PDE in Equation (1) to derive the analytic option pricing formulas
for path dependent options at t = 0?

� For arithmetic average options, one can alternatively define the path dependent variable
as I(t) = 1

t

∫ t
0
S(τ)dτ . Then at any time point t,
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dI
dt = 1

tS(t)− 1
t2

∫ t
0
S(τ)dτ = 1

t

(
S(t)− 1

t

∫ t
0
S(τ)dτ

)
= 1

t (S(t)− I(t)) = f(S, t)

⇒ ∂V
∂t + 1

2σ
2S2 ∂2V

∂S2 + 1
t (S − I)∂V∂I + (r − q)S ∂V∂S − rV = 0.

� If t = 0, since I(0) = S(0) by definition, the above PDE reduces to

∂V
∂t + 1

2σ
2S2 ∂2V

∂S2 + (r − q)S ∂V∂S − rV = 0,

which is identical to Equation (1). In this case, the above PDE’s solution (the analytic
pricing formula for arithmetic options at t = 0) does not contain any I(0)-related terms.

� Since the PDF in Equation (1) can be used to derive analytic pricing formulas for both
path independent and dependent options on the issue day, it is common to say that all
options satisfy the PDE in Equation (1).
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