
Ch 8. Barrier Option

I. Analytic Solutions and Monte Carlo Simulation for Barrier Options

II. Finite Difference Method to Price Barrier Options

III. Binomial Tree Model to Price Barrier Options

IV. Reflection Principle and Pricing Barrier Options

V. Some Applications of Barrier Options

Appendix A. Pricing Parisian Options

• Barrier options are path dependent options. For knock-in barrier options, they becomes
viable and thus acting like standard options only if the underlying price touches a specific
barrier price during option life. For knock-out barrier options, they are initially standard
options, but they become worthless if the underlying price touches a specific barrier
price during option life. However, the dependence is weak because we only have to
know whether or not the barrier has been touched during option life. Other information
associated with the path is not necessary for pricing barrier options.

• In this chapter, the analytic solution, Monte Carlo simulation, finite difference method,
and binomial tree model are introduced to price barrier options. Next, a fast and efficient
method to price barrier options based on the reflection principle is introduced. Moreover,
some applications of barrier options are shown. Finally, a method to price Parisian option
is presented.

I. Analytic Solutions and Monte Carlo Simulation for Barrier Options

• There are closed-form solutions for pricing European-style barrier options. For instance,
for a down-and-in call with the payoff

cT =

{
max(ST −K, 0) if Smin,T (= min

0≤u≤T
Su) <= B

0 o/w
,

its pricing formula is as follows.

cdown-and-in = S0e
−qT (B/S0)2λN(y)−Ke−rT (B/S0)2λ−2N(y − σ

√
T ),

where λ =
r−q+σ2/2

σ2 , y =
ln(B2/(S0K))

σ
√
T

+ λσ
√
T , and B is the barrier level and assumed

to be lower than the initial stock price and strike price.
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• For the eight types of barriers–the combinations of down or up, in or out, and call or put,
their closed-form solutions can be referred to Reiner and Rubinstein (1991), “Breaking
Down the Barriers,” Risk 4, pp. 28–35.

• Comparing with developing closed-form solutions, applying the Monte Carlo simulation to
pricing barrier options is relatively simple. First, simulate N stock price paths according
to lnSt+∆t ∼ ND(lnSt + (r − q − σ2/2)∆t, σ2∆t). Second, decide whether each path is
knocked in or out and thus determine the final payoff of each path. Finally, the option
value today is the arithmetic average among the present values of the final payoffs of all
N stock price paths.

• In addition to pricing standard barrier options, the flexibility of the Monte Carlo simu-
lation is able to deal some exotic features in barrier options, e.g., the discrete-sampling
barrier option or the soft barrier option mentioned in Ch 3.

• However, the Monte Carlo simulation works only for European-style barrier options. So, in
this chapter, the finite difference method and the binomial tree model are also introduced
to price both American- and European-style barrier options.

II. Finite Difference Method to Price Barrier Options

• For different kinds of options, the corresponding partial differential equations are the
same to be ∂V

∂t + 1
2σ

2S2 ∂2V
∂S2 + (r − q)∂V∂S = rV . Different options can be priced based

on different assumptions of boundary conditions. The boundary conditions for various
standard barrier call options are discussed as follows. The extension to barrier put options
is straightforward.

(i) “up-and-out” call (Bu denotes the upper barrier, and Bu > K is assumed):

V (S, t) = 0, for t < T and S ≥ Bu,

V (S, T ) =

{
max(S −K, 0) if S < Bu
0 o/w

.

Figure 8-1
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(ii) “down-and-out” call (Bd denotes the lower barrier, and Bd < K is assumed):

V (S, t) = 0, for t < T and S ≤ Bd,

V (S, T ) =

{
max(S −K, 0) if S > Bd

0 o/w
.

Figure 8-2
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(iii) “up-and-in” call (Bu denotes the upper barrier, and Bu > K is assumed):

V (S, t) = c(S, t), for t < T and S ≥ Bu,

V (S, T ) =

{
max(S −K, 0) if S ≥ Bu

0 o/w
.

Figure 8-3
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(iv) “down-and-in” call (Bd denotes the upper barrier, and Bd < K is assumed):

V (S, t) = c(S, t), for t < T and S ≤ Bd,

V (S, T ) =

{
max(S −K, 0) if S ≤ Bd

0 o/w
.

Figure 8-4
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� For (iii) and (iv), the option holder obtains a plain vanilla call option whenever the
stock price touches the barrier.

• In-out parity:

European vanilla option = European knock-out option + European knock-in option

� Note the above equation holds only for European options and for the barriers in knock-
out and knock-in options being the same.

� For the American versions, since the early exercise time point of an in barrier option
may not be the same as that of the corresponding out barrier option, the parity relation
does not hold.

� Suppose an investor holds both a knock-out option and a knock-in option. If the stock
price never touches the barrier, the knock-out option will provide the same payoff as that
of a vanilla option at maturity. When the stock price touches the barrier, the knock-out
option becomes worthless and the knock-in option are enabled and providing the same
payoff as that of a vanilla option at maturity.

� Since the combined payoff of a knock-out option and a knock-in option are the same
as that of a vanilla option at maturity, their values today should be equal. This result is
termed as “in-out parity.”

� Alternative method to price knock-in options:
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Since it needs more computational effort to price a knock-in option, it is possible to price
a knock-out option with the same barrier first, and then apply the in-out parity to derive
the value of the knock-in option.

III. Binomial Tree Model to Price Barrier Options

• Binomial Tree for barrier options (taking the down-and-out call with B < K as an
example)

� The straightforward method is to replace the option value with 0 in the region lower
the barrier B during the backward induction process.

Figure 8-5

S0
K

B

0

� In fact, it is able to derive correct results if only the option values of the node on the
stock price layer just smaller or equal to the barrier are replaced with zero. Following
this rule, a more concise and efficient algorithm can be developed on the next page.
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• The pricing algorithm in Financial Engineering and Computation, by Lyuu.
input: S, u, d,K,B(B < K,B < S), n, r̂ = rT/n = r∆t;

real R, p, c[n+ 1];

integer i, j, h;

R := er̂; p := (R− d)/(u− d); //CRR binomial tree model

h := bln(B/S)/lnuc; //h is the index of the stock price layer just smaller or equal to B

for (i = 0 to n) {c[i] := max(0, Sun−idi −K); } //payoffs for terminal nodes

if [n− h is even and 0 ≤ (n− h)/2 ≤ n]

c[(n− h)/2] := 0; //reaching node (n− h)/2 means a hit for the barrier

for (j = n− 1 down to 0){
for (i = 0 to j)

c[i] := (p× c[i] + (1− p)× c[i+ 1])/R; //backward induction based on one column vector

if [j − h is even and 0 ≤ (j − h)/2 ≤ j]
c[(j − h)/2] := 0; //reaching node (j − h)/2 means a hit for the barrier

}
return c[0];

Figure 8-6
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The values of n = 4 and h = −2 are taken as an example to trace the above program.

� n = 4: Since n−h = 6 is even and n−h
2

= 3 < n = 4, the option value for node n−h
2

= 3
at j = n is set to be zero.

� j = 3: Since j − h = 5 is odd, it is not necessary to do anything. (Since we consider
the down-and-out call, the option value for node 3 at j = 3 should be zero. However,
the option value for that node does not affect the option value today, because the option
value of its parent node, node 2 at j = 2, will be set to be zero during the following
backward induction procedure.)

� j = 2: Since j − h = 4 is even and j−h
2

= 2 ≤ j = 2, the option value for node j−h
2

= 2
at j = 2 is set to be zero.

� j = 1: Since j − h = 3 is odd, it is not necessary to do anything.

� j = 0: Since j − h = 2 is even and j−h
2

= 1 > j = 0, it is not necessary to do anything.

8-6



IV. Reflection Principle and Pricing Barrier Options

• Mathematical fundamental of the reflection principle:

Figure 8-7



y

(0, )a

(0, )a ( , )n b

t

� For all paths from node(0,−a) to node(n,−b), how many of them will touch or cross
the x-axis?

In the above figure, the reflection principle states that any path from node(0, a) to
node(n,−b) corresponds to one of this kind of paths. So the problem is changed to
count the number of paths from node(0, a) to node(n,−b).

� The method to count the nubmer of paths from node(0, a) to node(n,−b):
There are all n time periods, and for each time period, the stock price can move upward
or downward: up + down = n

In order to start from the level of y = a to the level of y = −b, the number of net
downward steps should be a+ b, i.e., down − up = a+ b

⇒
{

up + down = n
down − up = a+ b

⇒
{

down = n+a+b
2

up = n−a−b
2

Thus the number of paths from node(0, a) to node(n,−b) is
(

n
n+a+b

2

)
=
(

n
n−a−b

2

)
.

As a consequence, the number of the paths from node(0,−a) to node(n,−b) and touching
or crossing the x-axis equals

(
n

n+a+b
2

)
=
(

n
n−a−b

2

)
.

� Note that
(
n
k

)
, the combination of k from n, returns zero for k < 0, k > n, or k is not

an integer.
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• Apply the reflection principle to pricing down-and-in calls (pp. 234–242 in Financial En-
gineering and Computation, by Lyuu)

Figure 8-8
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� First step: index the nodes on the binomial tree and decide the index of the stock price
layer for terminal nodes.

k=d ln(K/Sdn)
ln(u/d)

e, where d e is the upper Gauss operator

· The layer k is the layer just above the strike price.
· For calls, from the layer k to the layer n, these stock price levels are in the money.

h=b ln(B/Sdn)
ln(u/d)

c, where b c is the lower Gauss operator

· The layer h is the layer just below the barrier.
· In contrast, if an upper barrier is considered, the layer h just above the barrier is
chosen to insure that paths touching or crossing the layer h must touch or cross the
barrier.

� Second step: shift the tree on the yt-plane such that the layer h coincides with the
t-axis. As a consequence, the root node is indexed as node(0, n− 2h) and the node with
the stock price S0u

jdn−j is indexed as node(n, 2j − 2h).

� Third step: only the paths from node(0, n − 2h) to node(n, 2j − 2h) and touching or
crossing the x-axis are knocked in and thus with the payoff of max(S0u

jdn−j −K, 0).

⇒ According to the reflection principle, the number of knocked-in paths from

node(0, n− 2h) to node(n, 2j − 2h) is

(
n

n+(n−2h)+(2j−2h)
2

)
=

(
n

n− 2h+ j

)
.
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� Finally, since we know that each path is with the probability to be pj(1−p)n−j, option
value equals

e−rT ·
n∑
j=k

(
n

n− 2h+ j

)
· pj(1− p)n−j · (Sujdn−j −K).

(This method is in essence a combinatorial method, so it is not necessary to build the
binomial tree, and down-and-in calls can be priced based on the above equation directly.
Note this method or other combinatorial methods works only for European options.)

• Forward-tracking method: to record (or inherit) some information during the forward
tree-building phase.

For barrier options: record (or inherit) the probability pair (hit, not hit).

The algorithm is to inherit the probability pair from the parent nodes, and reclassify
all probability to be the hit probability whenever crossing the barrier from below. In
addition, suppose p = 1− p = 1

2
for simplicity.

Figure 8-9
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⇒ The value for a up-and-in call =

e−rT
n∑
j=0

(
n
j

)
· pj · (1− p)n−j · hit

hit+not hit
·max(Sujdn−j −K, 0),

where the product of

(
n
j

)
and hit

hit+not hit
equals the number of knock-in paths con-

ditional on starting from the root and reaching node(i, j).

(In this method, it is necessary to build a tree and to record (or inherit) the information
of the probability pair (hit, not hit) during the forward tree-building phase. However, the
advantage of this method is that it is possible to extend this method to pricing American
barrier options after proper modification.)
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V. Some Applications of Barrier Options

• Since there is a exercise boundary for an American option, it can be priced as a knocked-
and-exercised barrier options.

� The exact value of an American put satisfies the following equation. Please refer to
Kim (1990), “The Analytic Valuation of American Options,” Review of Financial Studies
3, pp. 547–572.

PAm = PEu(St) +

∫ T

t

rKe−r(τ−t)N(−d2(St, Bτ , τ − t))dτ

−
∫ T

t

qSte
−r(τ−t)N(−d1(St, Bτ , τ − t))dτ∥∥∥∥∥∥

The second and third terms represent the interest income and the loss
of dividends from the early exercise of the American put. The explanation
for these two terms is in Figure 8-10.

= PEu(St) +K(1− e−r(T−t))− St(1− e−q(T−t))

−K
∫ T

t

re−r(τ−t)N(d2(St, Bτ , τ − t))dτ

+St

∫ T

t

qe−q(τ−t)N(d1(St, Bτ , τ − t))dτ,

where d1(x, y, s) = ln(x/y)+(r−q+σ2/2)s
σ
√
s

,

d2(x, y, s) = ln(x/y)+(r−q−σ2/2)s
σ
√
s

= d1(x, y, s)− σ
√
s,

Bt is the early exercise barrier satisfying the following equation:

K −Bt = PEu(Bt) +K(1− e−r(T−t))−Bt(1− e−q(T−t))

−K
∫ T
t
re−r(τ−t)N(d2(Bt, Bτ , τ − t))dτ

+Bt

∫ T
t
qe−q(τ−t)N(d1(Bt, Bτ , τ − t))dτ .
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Figure 8-10 The exercise boundary of a put option when r ≥ q

tS

S

tB

t 1it  it 1it  T
t

Path 1

K

Path 2

∗ Note that the exercise boundary of a put option at maturity is BT = K if r ≥ q. For
the case of r < q, BT = (r/q)K. Also refer to Kim (1990) for details.

1. At ti−1,

{
1. by exercising the American put, short Sti−1

for cash K.
2. deposit K to earn r with continuously compounding.

2. During ti−1 and ti, pay dividend yield continuously to the one who owns the stock
share.

3. At ti

 1. the interest and principal of the deposited cash K is Ker(ti−ti−1).
2. buy S back with Bti .
3. buy the American put back with K −Bti dollars.

}
total cost is K dollars

∗ At maturity, it is apparent that this strategy can generate the same payoff as that of a
European put, i.e., max(K − ST , 0).

◦ For path 1, the stock price will be no longer lower than the exercise boundary,
and the final payoff of the American put is max(K − ST , 0) = 0.
◦ For path 2, the stock price falls below the exercise boundary at ti+1, so we will
adopt steps 1 and 2 in the above strategy again. At maturity, buy S back with
ST , and buy the American put back with K − ST dollars. The total cost is still K
dollars. In addition, the investor can exercise the buy-back American put to earn
a positive payoff max(K − ST , 0) = K − ST because the put is in the money at
maturity.

∗ Therefore, the cumulative interest gains and the dividend yield costs for each time point
when the stock price falls below Bt construct the early exercise premium.
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� Pricing formula for down-and-exercised put with the exponential barrier Le−a(T−t)

PE
t (St, L, a) = K[λ̂t

b̂−β̂
N(d̂0) + λ̂t

b̂+β̂
N(d̂0 + 2β̂σ

√
T − t)]

−Le−a(T−t)[λ̂t
b̃−β̃

N(d̃0) + λ̂t
b̃+β̃

N(d̃0 + 2β̃σ
√
T − t)]

+Ke−r(T−t)[N(d̂−1 (Le−a(T−t)))−N(d̂−(K))+λ̂γ̂−1
t [N(d̂+(K))−N(d̂+

1 (Le−a(T−t)))]]

−Ste−q(T−t){N(d̂−1 (Le−a(T−t)) + σ
√
T − t)−N(d̂−(K) + σ

√
T − t)+

λ̂t
γ̂+1

[N(d̂+(K) + σ
√
T − t)−N(d̂+

1 (Le−a(T−t)) + σ
√
T − t)]},

where

λ̂t = Le−a(T−t)/St, b̂ = (r − q − a− 1
2
σ2)/σ2, β̂ =

√
b̂2 + 2r/σ2,

d̂0 = 1
σ
√
T−t [ln(λ̂t)− β̂σ2(T − t)], b̃ = (r − a− q − 1

2
σ2)/σ2,

β̃ =
√
b̃2 + 2(r − a)/σ2, d̃0 = 1

σ
√
T−t [ln(λ̂t)− β̃σ2(T − t)], γ̂ = 2(r − q − a)/σ2,

d̂±(x) = 1
σ
√
T−t [±ln(λ̂t) + ln(L)− ln(x) + (r − q − a− 1

2
σ2)(T − t)],

d̂1

±
(x) = 1

σ
√
T−t [±ln(λ̂t) + ln(L)− ln(x) + (r − q − 2a− 1

2
σ2)(T − t)].

∗ Since the Le−a(T−t) is not the true exercise boundary, if the investor follows this non-
optimal exercise strategy, the derived option value will smaller than the true American
value, which is priced based on the truly optimal exercise boundary. As a consequence,
the option value of a down-and-exercised put is a lower bound for the an American option.

∗ If you can find the L∗ and a∗ to maximize the option value of the down-and-exercised
put, you can derive a very tight lower bound of the American option value, usually within
several cents, i.e.,

PAm ≥ (≈) max
L,a

PE
t (St, L, a)

(See Chung, Hung, and Wang (2010), ”Tight Bounds on American Option Prices,” Jour-
nal of Baking & Finance 34, pp. 77–89.)
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Appendix A. Pricing Parisian Options

• The content in this appendix belongs to the advanced content.

• Apply the combinatorial method to pricing Parisian option. Parisian up-and-out calls are
considered, and when the stock price remains above a barrier continuously for a period
larger than or equal to a pre-specified time interval (l periods of time in the following
example), the option is knocked out.

Costabile, (2002), “A Combinatorial Approach for Pricing Parisian Options,” Decisions
in Economics and Finance 25, pp. 111–125.

Figure 8-11 The indexing rule for nodes on the binomial tree.

node(0,0)

node( , )i i
node( , 2)i i 

(  up steps and  down steps)

node( , ) node( ,2 )
a i a

i j i a i


 

node( , )i i

barrier B

N(i, j): the number of paths from the origin to node(i, j).

g(i, j): the number of paths from root to node(i, j) that are characterized by a maximum
sojourn time above the barrier B strictly smaller than the time interval of length l, i.e.,
the still alive paths reaching node(i, j).

(Since we are pricing up-and-out Parisian options, for any node(i, j), only these g(i, j)
paths are not knocked out and only these g(i, j) paths could contribute positive payoff
for the option at maturity.)

m: minimum number of successive up steps that the initial stock price must take to touch
or cross the barrier.
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Figure 8-12

node(0,0)

node( , )n n

node( , )n n

Region B

Region D

Region C

Region A
m j m l  

barrier B

j m l 

j m

i m l  i m l 

node( , )i j

Region A (i < m+ l): g(i, j) = N(i, j) (For all paths reaching this region, the maximum
sojourn time above the barrier B is smaller than l.)

Region B (i ≥ m+ l, j ≥ m+ l): g(i, j) = 0 (A path starting from the root and reaching
any node in this region must spends at least l successive periods above the barrier.)

Region C (i ≥ m+ l, j < m): g(i, j) = g(i− 1, j + 1) + g(i− 1, j − 1) (For any node(i, j)
in this region, inherit g(·, ·) from its parents nodes. Since node(i, j) is below the barrier,
the paths reaching its parent nodes and not knocked out will not be knocked out even
after one additional step to node(i, j).)

Region D (i ≥ m+ l,m ≤ j < m+ l):

g(i, j) =
∑

0≤k< l−(j−m)
2

g(i−(j−m)−2k−1,m−1)·
[ (

j −m+ 2k
j −m+ k

)
−
(
j −m+ 2k
j −m+ k + 1

) ]
.

� For any node(i, j) in this region, some still alive paths reaching its parent nodes have
already stay continuously above the barrier for l − 1 periods. Since node(i, j) is above
the barrier, if considering one more step to reach node(i, j) from its parent nodes, some
paths may be knocked out when reaching node (i, j). Thus, it must be the case that
g(i, j) ≤ g(i − 1, j + 1) + g(i − 1, j − 1). In other words, it is impossible to use the
information of g(i− 1, j + 1) and g(i− 1, j − 1) of parent nodes to calculate g(i, j). Take
the node Z in Figure 8-13 as an example.
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Figure 8-13 The numbers in the parentheses at each node is (g(i, j), ḡ(i, j)), where
ḡ(i, j) is the number of paths that the maximum sojourn time above B is greater than or
equal to l.
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� The method based on the reflection principle to calculate g(i, j):

Figure 8-14

node( , )i j

Region D

layer m
barrier B

node( ( ), )i j m m 

node( ( ) 2 1, 1)i j m k m    

node( ( ) 2 , )i j m k m  

layer 1m 

layer m l

The paths contribute to g(i, j) must satisfy the following three conditions:

1. Consider the number of still alive paths for node(i − (j − m) − 2k − 1,m − 1), i.e.,
g(i − (j − m) − 2k − 1,m − 1). Since these nodes are below the barrier B, the still
alive paths of these nodes do not accumulate any number of period sojourning above the
barrier B.

2. Move upward one step to node(i− (j −m)− 2k,m), which is just above the barrier.

3. Start from node(i− (j −m)− 2k,m) to node(i, j).

3.1. Do not cross the barrier B from above.

3.2. The number of sojourn period is smaller than l.

(i) The method to choose k: Since the number of steps from node(i − (j −m) − 2k,m)
to (i, j) must smaller than l.

⇒ i− (i− (j −m)− 2k) = (j −m) + 2k < l

⇒ k < l−(j−m)
2

.

(ii) The number of all paths from node(i−(j−m)−2k,m) to node(i, j) is

(
j −m+ 2k
j −m+ k

)
.∥∥∥∥ Total number of steps is (j −m) + 2k, and the number of net upward steps is j −m.

⇒ The number of upward steps is j −m+ k, and the number of downward steps is k.

(iii) The number of paths which are from node(i− (j −m)− 2k,m) to node(i, j) and not
crossing B from above

= the results in (ii) − number of paths form node(i− (j −m)− 2k,m) to node(i, j)

which touch or cross the layer m− 1

= the results in (ii) −
(
j −m+ 2k
j −m+ k + 1

)
.
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∥∥∥∥∥∥∥∥∥∥∥∥

By the reflection principle, the second term in the above equation equals the number of
paths from node(i− (j −m)− 2k,m− 2) to node(i, j).

Total number of steps is j −m+ 2k, and the number of net upward steps is j −m+ 2.
⇒ The number of upward steps is j −m+ k + 1, and the number of downward steps is
k − 1.

� For Parisian up-and-out call,

option value=e−rT
n∑
a=0

g(n, j)pa(1− p)n−amax(Suadn−a −K, 0), where j = 2a− n.
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