
Ch 7. Greek Letters, Hedging, and Trading

I. Option Greek Letters

II. Numerical Differentiation to Calculate Greek Letters

III. Dynamic (Inverted) Delta Hedge

IV. Selected Trading Strategies

• This chapter analyzes the characteristics of the Greek letters of options first. Next,
the numerical differentiation methods to calculate Greek letters are discussed. Third, the
dynamic delta hedge method, which is the most common hedging method for institutional
option traders, is synthesized. Moreover, the inverted delta hedge method to arbitrage
from undervalued convertible bonds in Taiwan is introduced. Finally, several selected
trading strategies are explored.

I. Option Greek Letters

• Consider an asset paying a yield q and its price process under the risk neutral measure
Q as follows.

dSt/St = (r − q)dt+ σdZ.

• The corresponding Black and Scholes formulas for call and put options on the asset are

c = S0e
−qTN(d1)−Ke−rTN(d2),

p = Ke−rTN(−d2)− S0e
−qTN(−d1),

where

d1 =
ln(

S0
K

)+(r−q+σ2

2
)T

σ
√
T

,

d2 =
ln(

S0
K

)+(r−q−σ
2

2
)T

σ
√
T

= d1 − σ
√
T .
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• Delta ∆ ≡ ∂c
∂S0

� For calls: ∆ = e−qTN(d1).

� For puts: ∆ = e−qT [N(d1)− 1].

Derivation of ∆ of calls:

First, we can derive

∂d1
∂S0

= ∂d2
∂S0

=
1
S0

σ
√
T

= 1
S0σ
√
T

.

Next, we proceed the differentiation with respect to S0:

∂c
∂S0

= e−qTN(d1) + S0e
−qTφ(d1) 1

S0σ
√
T
−Ke−rTφ(d2) 1

S0σ
√
T

,

where the sum of the last two terms are

S0e
−qTφ(d1) 1

S0σ
√
T
−Ke−rTφ(d2) 1

S0σ
√
T

=
e−qTφ(d1)− K

S0
e−rTφ(d1−σ

√
T )

σ
√
T∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

for the numerator

e−qT 1√
2π
e−

d21
2 − K

S0
e−rT 1√

2π
e−

(d1−σ
√
T )2

2

(− (d1−σ
√
T )2

2 = −d
2
1

2 + d1σ
√
T − σ2T

2 )

= 1√
2π
e−

d21
2 (e−qT − K

S0
e−rT+d1σ

√
T−σ

2T
2 )

(d1σ
√
T = ln(S0

K ) + rT − qT + σ2T
2 )

= 1√
2π
e−

d21
2 (e−qT − K

S0
eln(

S0
K

)−qT )

= 0

= 0.

⇒ ∂c
∂S0

= e−qTN(d1).

• ∂c
∂K = S0e

−qTφ(d1)∂d1∂K −e
−rTN(d2)−Ke−rTφ(d2)∂d2∂K = −e−rTN(d2), where ∂d1

∂K = ∂d2
∂K =

−1
Kσ
√
T
.

• Theta θ ≡ − ∂c
∂T (measuring the time decay of the option value)

� For calls: θ = −S0φ(d1)σe−qT

2
√
T

+ qS0N(d1)e−qT − rKe−rTN(d2).

� For puts: θ = −S0φ(d1)σe−qT

2
√
T

− qS0N(−d1)e−qT + rKe−rTN(−d2).

• Gamma Γ ≡ ∂2c
∂S2

0

� For calls and puts: Γ =
φ(d1)e−qT

S0σ
√
T

.
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• Vega υ ≡ ∂c
∂σ

� For calls and puts: υ = S0e
−qT√Tφ(d1) = Ke−rT

√
Tφ(d2).

• Rho ρ ≡ ∂c
∂r

� For calls: ρ = KTe−rTN(d2).

� For puts: ρ = −KTe−rTN(−d2).

• Characteristics of Greek letters

� ∆:

(i) for calls, 0 ≤ ∆ ≤ 1; for puts −1 ≤ ∆ ≤ 0.

Figure 7-1
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(ii) When the time approaches the maturity T ,

∆(call) is 1 if the call is ITM and is 0 if the call is OTM.

∆(put) is −1 if the put is ITM and is 0 if the call is OTM.

∗ The value of ∆ jumps almost between only two extreme values and thus varies
discountinuously near maturity when the option is ATM.
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� Γ:
(i) For both calls and puts, the value of Γ, which measures the degree of curvature

of the option value respect to S0, is the same and always positive.

(ii) Since the value of Γ is positive, it benefits option holders.

(iii) The curve of Γ is similar to the probability density function of normal distribu-

tions because there is a term φ(d1) in the formula of Γ on page 7-2.

(iv) The value of Γ attains its extreme when the option is at the money since the

values ∆ vary more intensely with respect to the change of S0 when the option is

at the money.

(v) The kurtosis of the curve of Γ because higher for shorter time to maturity T . The

reason is due to the nearly discountinuous change of ∆, which implies an extremely

high value of Γ, near maturity.

Figure 7-2
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� υ:
(i) For both calls and puts, their values of υ are the same and positive, which

reflects that the values of options increases due to a higher degree of volatility of

the underlying asset price.

(ii) The curve of υ is similar to the probability density function of normal distribu-

tions because there is a term φ(d1) in the formula of υ on page 7-3.

(iii) When the time is close to the maturity date T , υ becomes smaller, which is

due to that the period of time in which the volatility σ can affect the option value

becomes shorter.

Figure 7-3
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� ρ:

(i) For calls, ρ is positive to reflect the positive impact of a higher growth rate r on

the probability of being ITM.

(ii) For puts, ρ is negative to refelct the negative impact of a higher growth rate r

on the probability of being ITM.

Figure 7-4

K



K

For call, ρ > 0 For put, ρ < 0

�0 �0 

� θ:

(i) θ can measure the speed of the option value decay with the passage of time. It is

worth noting that unlike the stochastic S0, σ, and r, the time is passing continuously

and not a risk factor.

(ii) The value of θ is always negative for both American calls and puts. However, it

is not always true for European puts because the dividend distritution could make

the value of European put rise to cover the time decay of the put value.

Figure 7-5
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(iii) For options that are at the money, the time decay of the option value is fastest

(than other moneyness) and thus the corresponding θ is most negative. See Figure

7-6.

Figure 7-6
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• The relationship among ∆, Γ, and θ:

Based on the partial differential equation of any derivative f ,
∂f
∂t + (r − q)S ∂f

∂S + 1
2σ

2S2 ∂
2f
∂S2 = rf ,

and the definitions of ∆, Γ, and θ, we can derive

θ + (r − q)S∆ + 1
2σ

2S2Γ = rf .

If we know the value of the derivative f and any two values among ∆, Γ, and θ, then

we can solve the value of the unknown Greek letter through the above equation.

Moreover, suppose f represents a delta-neutral portfolio, i.e., its ∆ equals 0. Then

the relationship between the Γ and θ of the portfolio f can be expressed as

θ + 1
2σ

2S2Γ = rf ,

which implies that for this delta-neutral portfolio, if the value of Γ is high, which

is a desired feature for option holders, the speed of time decay is also fast, i.e., the

value of θ is fairly negative and thus the option value declines quickly as time goes

on.
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II. Numerical Differentiation to Calculate Greek Letters

• One of the advantages of the Black-Scholes model is that the proposed option pricing
formula is differentiable, which makes it simple to calculate the Greek letters. However,
for other numerical option pricing methods, they need to resort to the numerical differen-
tiation to calculate the Greek letters. It is worth noting that for American options, there
is no analytic pricing formula and thus a numerical option pricing method combined with
the numerical differentiation should be considered.

• The main idea of the numerical differentiation is to employ the finite difference as the
approximation, i.e., if f is the option pricing function of any numerical method, then

∂f
∂S0
≈ f(S0+∆S)−f(S0)

∆S (forward difference),

≈ f(S0)−f(S0−∆S0)
∆S (backward difference),

≈ f(S0+∆S)−f(S0−∆S)
2∆S (central difference).

∗ Note that to compute the finite difference, it needs double time of the employed numer-
ical option pricing model.

∗ In this chapter, we focus on two numerical option pricing models, the CRR binomial
tree model and the Monte Carlo simulation.

• Numerical differentiation for the CRR binomial tree model.

� Convergent behavior of the CRR binomial tree model: Given S0 = 100, K = 100,
r = 0.05, q = 0.02, σ = 0.5, and T = 1, and the Black-Scholes call value is 20.5465.
For the CRR binomial tree model, the examined n ranges from 1 to 200. The differences
between the results of the CRR binomial tree model and the Black-Scholes model are
shown in Figure 7-7.

Figure 7-7
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� The reason for the oscillatory convergence behavior:
Suppose that when one of the stock price layers S0u

jdn−j , j = 0, 1, ..., n, e.g., the layer
k with S0u

kdn−k, is close to or coincides on the strike price K, the error of the CRR
binomial tree model is minimized.

Next, when the number of partitions n increases by 1, which changes the upward and
downward multiplying factors u and d, the layer m could deviate from the strike price
and it is very possible that there is no other layers that are quite close to or coincide
on the strike price K. Therefore, the error of the CRR binomial tree model becomes
larger.

In conclusion, as any stock price layer approaching and deviating from the strike price
with the increase of n, the error of the CRR binomial tree decreases and increases,
which causes the oscillatory convergence toward the theoretical value based on the
Black-Scholes model.

� Next, we fix the partition number of n and discuss about the choice of the ∆S when
calculating the Greeks with the numerical differentiation. Based on the same reasoning
mentioned above, the choice of the ∆S may shifts away a stock price layer, which is
originally close to or coincides on the strike price K, from the strike price K. It is also
possible to shift another stock price layer to become closer toward the strike price K.
As a result, the oscillatory option values occurs and sometimes the errors caused from
the oscillation increase with a decrease in ∆S. See Figure 7-8.

Figure 7-8
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� By observing the above figure, we can conclude

(i) The oscillatory convergence causes the numerical differentiation method to over- or
underestimated ∆ by turns along the S0 axis.

(ii) A smaller ∆S may not be better: The discontinuity of ∆ could hurt the estimation
of Γ based of the numerical differentiation seriously. Note that the error term δ/∆S
increases with a smaller value of ∆S, which generates a counterintuitive result that it is
not more accurate if you specify a smaller value of ∆S.

∗ To remedy the estimation problem of Γ, a moderately large ∆S should be considered.

By enhancing the probability such that ∆(S0 + ∆S/2) and ∆(S0−∆S/2) are simultane-
ously over- or underestimated, then there is little error term associated with δ.

Even when one of ∆(S0 + ∆S/2) and ∆(S0 − ∆S/2) is overestimated and the other is
underestimated, the error term δ/∆S is not significantly because firstly ∆S is large and
secondly the difference between ∆(S0 + ∆S/2) and ∆(S0 − ∆S/2) is large enough to
dominate the results of the numerical differentiation method.

• Another method to calculate Greek letters based on the CRR binomial tree model:

(i) The above numerical differentiation method is with not only the accuracy problem
but also the efficiency problem due to the necessity to calculate the binomial tree twice.

(ii) To solve both these problem, another method is proposed based on one-time binomial
tree calculation, as illustrated in Figure 7-9. However, this method can estimated only
∆, Γ, and θ.

Figure 7-9
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� The problems with this method: The estimations of ∆ and Γ are actually ∆ and Γ at
T/n and T/2n, but not today. If n approaches infinity, the errors become negligible.

• The extended tree model proposed by Pelsser and Vorst (1994), which is an improvement
of the above method. See Figure 7-10.

Figure 7-10
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∗ The extended tree model is more accurate than the method in Figure 7-9. However,
similar to the method in Figure 7-9, The extended tree model is applicable only for ∆,
Γ, and θ.

• Numerical differentiation based on the Monte Carlo Simulation:

� For the Monte Carlo simulation, the finite difference method together with the tech-
nique of common random variables can be employed to compute Greek letters. However,
the huge computational burden of the Monte Carlo simulation deteriorates because the
simulation needs to be performed twice in the finite difference method.

� Here two one-time simulation methods to compute Greek letters are introduced. These
two methods, the pathwise and likelihood methods, are proposed by Broadie and Glasser-
man (1996). In this section, only the European put is taken as example, and it is straight-
forward to apply these methods to the European call.
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� Pathwise method: all parameters affect ST and in turn affect the option value, so to
calculate ∂f/∂x for any parameter x, the calculation of ∂f

∂ST
ST
x is considered.

Define P = e−rT (K − ST )1{K≥ST }, and the option value today is p = E[P ].∥∥∥∥∥ ∂P
∂ST

= −e−rT 1{K≥ST }.
∂ST
∂S0

= ST
S0

(because ST = S0e
(r−q−σ

2

2
)T+σ

√
TZ).

(i) ∆ = E[ ∂P∂S0
], where ∂P

∂S0
= −e−rT 1{K≥ST }

ST
S0

.

(Note that to estimate ∆, we first simulate random samples of ST and next approximate
E[ ∂P∂S0

] = E[−e−rT 1{K≥ST }
ST
S0

] with the arithmetic average of −e−rT 1{K≥ST }
ST
S0

.)

(ii) Γ = E[(∆(S0 + h)−∆(S0))/h] = E[(−e−rT (STS0
) (1{K≥ST (S0+h)} − 1{K≥ST (S0)}))/h]

= E[+e−rT (STS0
) 1{ST (S0+h)≥K≥ST (S0)}/h] = E[e−rT (STS0

)
G(ST (S0+h))−G(ST (S0))

h ]

(because
ST (S0+h)
S0+h =

ST (S0)
S0

, and this ratio is independent of S0)

h→0,ST→K
= E[e−rT (KS0

)2 g(K)],

where G =
∫
dg, g(K) = 1

Kσ
√
T
n(d(K)), and d(K) =

ln(K/S0)−(r−q−σ
2

2
)T

σ
√
T

.

(iii) υ = E[∂P∂σ ], where ∂P
∂σ = ∂P

∂ST
· ∂ST∂σ = e−rT 1{K≥ST }S0e

(r−q−σ
2

2
)T+σ

√
TZ(−σT +

√
TZ)

= e−rT 1{K≥ST }
ST
σ [ln ST

S0
− (r − q + 1

2σ
2)T ].

(iv) ρ = E[∂p∂r ], where ∂P
∂r = −T e−rT 1{K≥ST }(K − ST )− e−rT 1{K≥ST }

∂ST
∂r

= −T e−rT 1{K≥ST }(K − ST )− e−rT 1{K≥ST }
∂ST
∂r STT

= −KTe−rt1{K≥ST }.

(v) θ = E[− ∂p
∂T ], where −∂P∂T = re−rT (K − ST )1{K≥ST }

+e−rT 1{K≥ST }
ST
2T [ln(STS0

)− (r − q − 1
2σ

2)T ].
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� Likelihood method: all parameters affect the probability density function of ST and in
turn affect the option value.

Define the option value as p =
∫∞

0
e−rT max(K − x, 0)g(x)dx∥∥∥∥∥∥∥∥

g(x) = 1
xσ
√
T
n(d(x)) (g(ST ) is the probability density function of ST ),

n(z) = 1√
2π
e−

z2

2 ,

d(x) =
ln x

S0
−(r−q− 1

2
σ2)T

σ
√
T

.

(i) ∆ = ∂p
∂S0

=
∫∞

0
e−rT max(K − x, 0)

∂g(x)
∂S0

dx

=
∫∞

0
e−rT max(K − x, 0)

∂g(x)
∂S0

1
g(x)

g(x)dx

= E[e−rT max(K − ST , 0)
∂ln g(ST )
∂S0

].∥∥∥∥∥∥∥∥∥
ln g(x) = −(lnx+ lnσ + ln

√
T + ln

√
2π)− d(x)2

2

⇒ ∂ln g(x)
∂S0

|x=ST = −d(x)
∂d(x)
∂S0
|x=ST = −

ln
ST
S0
−(r−q− 1

2
σ2)T

σ
√
T

−1
S0σ
√
T

=
ln

ST
S0
−(r−q− 1

2
σ2)T

S0σ2T =
d(ST )

S0σ
√
T
.

(ii) υ = ∂p
∂σ = E[e−rT max(K − ST , 0)

∂ln g(ST )
∂σ ].∥∥∥∥∥∥∥∥

∂ln g(x)
∂σ |x=ST = − 1

σ − d(ST )
∂d(x)
∂σ |x=ST .

⇓
ln

S0
ST

+(r−q+σ2

2
)T

σ2
√
T

(iii) Γ = ∂2p
∂S0

2 =
∫∞

0
e−rT max(K − x, 0)

∂2g(x)

∂S0
2 dx

=
∫∞

0
e−rT max(K − x, 0)

∂2g(x)

∂S0
2

1
g(x)

g(x)dx

=E[e−rT max(K − ST , 0)
∂2g(ST )

∂S0
2

1
g(ST )

].

‖∂
2g(x)

∂S0
2 |x=ST · 1

g(ST )
=

d(ST )2−d(ST )σ
√
T

S2
0σ

2T
.

(iv) ρ = ∂P
∂r =

∫∞
0

max(K − x, 0)[−Te−rT g(x) + e−rT ∂g(x)
∂r

1
g(x)

g(x)]dx

=
∫∞

0
e−rT max(K − x, 0)[−T +

∂g(x)
∂r

1
g(x)

]g(x)dx

=E[e−rT max(K − ST , 0)[−T +
∂g(ST )
∂r

1
g(ST )

]].

‖∂g(x)
∂r |x=ST

1
g(ST )

=
∂ln g(x)
∂r |x=ST = −d(ST )

∂d(x)
∂r |x=ST = d(ST )

√
T
σ .
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(v) θ = −∂P∂T =
∫∞

0
max(K − x, 0)[re−rT g(x)− e−rT ∂g(x)

∂T
1

g(x)
g(x)]dx

= E[e−rT max(K − ST , 0)[r − ∂ln g(ST )
∂T ]].∥∥∥∥∥∥∥∥

∂ln g(ST )
∂T = − 1

2T − d(ST )
∂d(x)
∂T |x=ST .

⇓
− ln

ST
S0
−(r−q−σ

2

2
)T

2σT
3
2

∗ To estimate each Greek letters, we simulate random sample of ST , and next estimate
E[ω(ST )] with the arithematic average of ω((ST ), where [ω((ST ) could be any target
functions in the formulas of different Greek letters.

III. Dynamic (Inverted) Delta Hedge

• Consider an institutional investor to issue a call option contract, in which S0 = 49,
K = 50, r = 0.05, q = 0, σ = 0.2, T = 0.3846 (20 weeks), and the underlying assets of
this call option contract are 100,000 shares of stock. The Black-Scholes model generates
the theoretical value of this call option contract to be $240,000.

� Inspired from the derivation of the partial differentiation equation, longing ∆t shares
of St and shorting one share of Ct can form an instantaneous risk free portfolio, i.e.,

∆tSt − Ct = Bt,

where Bt is the balance of borrowing costs and lending interests. Rewrite the above
equation to derive

Ct = ∆tSt −Bt.
That means dynamically adjusting the position ∆tSt−Bt can replicate Ct for any t. More
specifically, the trading strategy of this dynamic delta hedge method is as follows.{

St ↑,∆t ↑⇒ buying stock shares such that the total position is 100,000∆t shares
St ↓,∆t ↓⇒ selling stock shares such that the total position is 100,000∆t shares
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Table 7-1 The Call Option is ITM at Maturity (collected from Hull (2011))
—————————————————————–

—————————————————————–

� At maturity, the cost of the dynamic hedging strategy is $5,263,300, and the institu-
tional investor owns 100,000 shares of stock. On the other hand, the call holder exercise
this option to purchase 100,000 shares of stock at $50 × 100, 000. As a consequence,
the net cost of the institutional investor is $263,300, which is close to the call premium
$240,000.
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Table 7-2 The Call Option is OTM at Maturity (collected from Hull (2011))
—————————————————————–

—————————————————————–

� At maturity, the cost of the dynamic hedging strategy is $256,600, and the institutional
investor does not own any share of stock. On the other hand, the call holder give up his
right to exercise this option. As a consequence, $256,600 is the net cost of the institutional
investor and is close to the call premium $240,000.

∗When the rebalancing frequency increases, the payoff of the dynamic delta hedge is more
stable and close to $240,000, which is the theoretical value based on the Black-Scholes
model.

∗ In practice, the option issuer sells the option higher than the theoretical value, e.g.,
$300,000 in the above example. The reasons are as follows.

(i) The option issuer needs some profit to undertake this business.

(ii) Theoretically speaking, the hedging costs can approach the Black-Scholes option value
only when

(ii.1) the rebalancing frequency approaches infinity, which is impossible in practice.

(ii.2) the volatility of stock returns remains constant and as expected during the subse-
quent option life, which could occur with little probability.

(iii) The transaction costs in the real world may incur more hedging costs than the
theoretical amount.

As a result, it is common for option issuers to mark up the option premium. The general
rule to decide the option premium is to use a volatility value that is higher than the
estimated one by, for example, 20%.
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� Analysis of the hedging cost in different patterns of price movements:

(i) Stock price rises continuously: Purchase ∆0S0 initially, and continue to buy stock
shares until T . The net payoff of the dynamic delta hedge depends on the relative levels
of the average purchasing price and the strike price, which is the selling price of stock
shares for the option issuer at maturity.

Figure 7-11
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(ii) Stock price declines continuously: Purchase ∆0S0 initially, and continue to sell those
purchased stock shares until T . Since the purchasing price is higher than the selling price,
the hedging cost accumulates continuously.

Figure 7-12
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(iii) Normal pattern of the stock price movement: Purchase ∆0S0 initially, continue to
purchase stock shares until St rises to reach S1, sell stock shares until St declines to reach
S2, and so forth. It is apparent that the the some hedging costs occur in the S0 → S1 → S2

round trip due to the trading strategy of purchasing at high and selling at low.

Hence, we can infer that if the stock price movement upward and downward by turns,
these price fluctuations (or said price volatility) incur hedging costs.

Figure 7-13
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∗ If the time period is long enough and the price volatility is sufficiently high, then the
hedging costs due to the price volatility will dominate the total hedging costs.

• Inverted delta hedging strategy: if you can find a relatively cheaper call option in the
market, e.g., the call option sold at 200, 000 in the above example, then you can reverse
your trading strategy to exploit this opportunity.

� That is, (−1) × [Ct = ∆tSt − Bt], which is the trading strategy of the dynamic delta
hedge, generate the trading strategy of the inverted delta hedge −∆tSt + Bt, which can
replicate the position of −Ct. Since you can purchase a cheaper Ct and exploit −∆tSt+Bt
to generate the Black-Scholes option value, you can arbitrage from this opportunity almost
certainly.

(Note that in the dynamic delta hedge, the trading strategy incurs some hedging costs.
On the other hand, in the inverted delta hedge, its trading strategy generates some trading
profits, i.e., the strategy −∆tSt+Bt = −Ct can generates the payoff equal to the amount
of selling a call option at the theoretical Black-Scholes option value.)

� The trading strategy of this inverted delta hedging method is as follows.{
St ↑,∆t ↑⇒ selling stock shares such that the total position is −100, 000∆t shares
St ↓,∆t ↓⇒ purchasing stock shares such that the total position is −100, 000∆t shares
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� The result of the above trading strategy:

(i) Short sell ∆0S0 shares of stock initially and deposit the selling proceed in the bank to
earn the risk free rate

(ii)

 St ↑,∆t ↑⇒ Sell more shares at St, and deposit more money in the bank

St ↓,∆t ↓⇒Withdraw money from the bank, and use it to purchase stock shares at St

⇒ The investor accumulates profits by continuously selling at high and buying back
at low.
∗ If the price moves upward and downward alternately for many rounds due to its
high volatility, the cumulative profits increase.
∗ If the price volatility is higher than the estimated one used in the Black-Scholes
model, the investor adopting the inverted delta hedging strategy can earn the payoff
in excess of the Black-Scholes option value.

(iii)



If ST ≥ K ⇒ the final position at maturity is to short sell 100,000 shares
⇒ purchase 100,000 shares at K through exercising the undervalued

call, and return these shares
⇒ the remaining balance in the bank account is what you can earn

If ST < K ⇒ all short selling shares are purchased back before maturity
⇒ the remaining balance in the bank account is what you can earn

� In Taiwan, the convertible bond (CB) can be regarded as a source of cheaper call
options. Longing CBs and performing the inverted delta hedge can achieve the above
arbitrage strategy.

7-18



IV. Selected Trading Strategies

• Interval trading (區間操作) for volatile stocks: purchase and sell shares proportionately
when the stock price falls and rises in the pre-specified price interval.

Table 7-3 Hypothetical Example

Stock price Holding shares

70 0

65 25

60 50

55 75

50 100

45 125

40 150

35 175

30 200

∗ Estimating the expected stock returns is far difficult than estimating the stock return
volatility.

∗ Accumulate profits through continuously performing the strategy of buying at low and
selling as high.

∗ If the stock price movements break the interval, the trading strategy pauses until the
stock price moves back into the interval.

• Butterfly (蝶狀價差) strategy for calm stocks: buy one share of call(K1) and one share of
call(K3) and sell two shares of call(K2), where K2 is the middle point of K1 and K3. It is
also possible to employ put options to construct the butterfly strategy. If the net payoff
after the deduction of the transaction costs is always positive regardless of the stock price,
the butterfly strategy can result in an arbitrage opportunity.

Figure 7-14
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∗When the option markets become more efficient, it is rarer to find this arbitrage oppor-
tunity.

∗ An asymmetric butterfly strategy is proposed as follow. For example, if K1 = 5800,
K2 = 6000, K3 = 6100, an asymmetric butterfly can be formed through buying one
share of call(K1 = 5800) and two shares of call(K3 = 6100) and selling 3 shares of
call(K2 = 6000).

• Straddle (跨式部位) and Strangle (勒式部位)

� Long (short) straddle is an investment strategy involving the purchase (sale) of each
share of the call and put option with the same strike price and time to maturity. The
chosen stirke price is usually close to the current stock price.

Figure 7-15
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∗ Long straddle makes profits if the stock price deviates from the strike price moderately.
On the contrary, short straddle makes profits if the stock price fluctuation is not far from
the strike price.

∗ Institutional investors use the trading strategy of long straddle for volatile stocks fre-
quently.
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� Long (short) strangle is an investment strategy involving the purchase (sale) of each
share of the call and put option with the same time to maturity but different strike prices.
Note that the strike price of the call is higher than the strike price of the put, and it is
usual that the current stock price is between this two strike prices.

Figure 7-16
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∗ Long strangle makes profits if the stock price deviates from the two strike price sig-
nificantly. On the contrary, short strangle makes profits if the stock price fluctuation is
roughly between the two strike prices of the call and put options.

∗ Institutional investors use a lot the trading strategy of short strangle to bet that the
maximum stock price movements do not exceed the range of [K1, K2].
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• Arbitrage between American deposit receipt (ADR) and the stock share in Taiwan

� Taking the ADR of TSMC as example: Suppose one shares of ADR of TSMC can

exchange for 5 stock shares of TSMC, and one share of ADR is worth US$8, one

share of stock of TSMC is worth NT$40, and the exchange rate is US$1 = NT$30.

� Therefore, the current premium ratio equals 240−200
200 = 0.25 = 25%.

� The intuition behind this strategy:
· If the premium ratio is high, the price of ADR compared with the share price of

TSMC is relatively high, and thus longing undervalued TSMC shares and shorting

overvalued ADR is profitable if the premium ratio moves back to the normal level.

· If the premium ratio is low, the price of ADR compared with the share price of

TSMC is relatively low, and thus shorting overvalued TSMC and longing underval-

ued ADR is profitable if the premium ratio moves back to the normal level.
� The detailed trading strategy is as follows.

(i) Estimated the long term average of the premium ratio, which is assumed to be

20%.

(ii) Define the upper and lower bounds of the premium ratio. In the following figure,

the upper and lower bounds are assumed to be 25% and 15%, respectively.

(iii)



If the premium ratio penetrates 25% from below,

buy 5 shares of TSMC and sell 1 share of ADR, and the position is closed

when the premium ratio moves back to 20%.

If the premium ratio penetrates 15% from above,

short 5 shares of TSMC and buy 1 share of ADR, and the position is closed

when the premium ratio moves back to 20%.

Figure 7-17
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� The tradoff to decide the upper and lower bounds of the premium ratio.

· If the band between the upper and lower bounds is too wide, then the frequency to
undertake the strategy is too few and thus less profits are earned.
· If the band is too narrow, then it is difficult to cover the transaction costs.

� The main concern of this strategy is the reliability of the estimation of the long term
average premium ratio. If the estimation is wrong, it is possible to suffer a lot of losses
based on this strategy.

� This strategy is preferred by some foreign financial institutions in Taiwan when the
market is preditable in the near future.
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