
Ch 6. Option Pricing under Non-Constant Volatility

I. Volatility Smile

II. Option Pricing When Volatility is a Function of S and/or t

III. Stochastic Volatility Models

IV. Option Pricing Under GARCH Model

V. Option Pricing Under Stochastic Volatility Process

• It is convincingly believed that the constant volatility assumption of the Black-Scholes
model is rejected by many empirical facts. Therefore, this chapter introduces several
(stochastic) volatility models and lattice option-pricing approaches to deal with the non-
constant volatility.

• The first approach is proposed by Nelson and Ramaswamy (1990) to consider the volatility
of the underlying asset being a function of the time and the price of the underlying
asset. The second approach, developed by Ritchken and Trevor (1999), is to price options
when the underlying asset price follows the GARCH model. The third approach is the
explicit FDM to price options when the underlying asset price follows stochastic volatility
processes.

I. Volatility Smile

• The phenomenon of volatility smile exhibits the variation of the Black-Scholes implied
volatility with respect to the strike price. In other words, the constant volatility assump-
tion in the Black-Scholes is not so correct. Next, I will discuss the volatility smile and
smirk for currency and equity options, respectively.
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• Volatility smile for currency options

Figure 6-1 Illustration of the Volatility Smile for Currency Options
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• It is intuitive that both implied volatilities of call or put options should be the same as
long as they share a common underlying asset. Thus, either the implied volatilities of
calls or the implied volatilities of puts could be employed to explain the volatility smile
phenomenon.

Figure 6-2 Explanation of the Volatility Smile for Currency Options
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• Possible reasons for the volatility smile of currency options:

(i) The volatility of the underlying asset is never to be constant.

(ii) The existence of price jump causes extreme returns and thus increase the probabilities
when ST is fairly high or low. Furthermore, for longer maturity, the jumps are averaged
out and thus the jumps have weaker impacts on the probabilities for ST being fairly high
or low. So, the volatility smile dies out with the increase of maturity, which is consistent
with empirical studies.

(iii) The stochastic volatility or GARCH processes could generate the probability distri-
butions of underlying assets with fatter tails.

• Volatility smirk for equity options (including index options and individual stock options):

Figure 6-3 Illustration of the Volatility Smirk for Equity Options
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Figure 6-4 Explanation of the Volatility Smirk for Equity Options
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• Possible reasons for the volatility smirk of equity options:

(i) The above volatility smile pattern for equity options is ture after the crash of stock
markets in October of 1987. Before October of 1987, the volatility is almost constant for
different strike prices. Thus, Mark Rubinstein, a famous academic in the finance field and
the inventor of the CRR binomial tree model, terms the reason underlying this volatility
pattern as “crashophobia,” meaning investors overestimate the probability that the stock
markets go download.

(ii) Leverage effect (first proposed in Christie (1982)): it is well known that when a firm
employs more leverage, the financial risk of the firm increases and thus the volatility of
the stock price increases to reflect this risk.

S ↓ (leverage ratio ↑), volatility ↑, which makes the stock price further decline.

S ↑ (leverage ratio ↓), volatility ↓, which makes the stock price further rise.

(iii) The volatility should follow an asymmetric GARCH or stochastic process to reflect
the countercyclical variation of the volatility, i.e., when the stock price rises (declines), it
volatility decreases (increases).
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• The relationship between the implied volatility and the time to maturity can be expressed
as a volatility term structure. If both the strike price and the time to maturity are
considered, a 3-D implied volatility function can be derived, which is called the volatility
surface. By observing the volatility surface, it can be found that the volatility smile is
pronounced for shorter times to maturity, but becomes minor for longer times to maturity.

• Option pricing models for non-constant volatilities:

(i) Volatility is a function of K and/or T :

∗ A naive approach in practice is to combine the BS formula and the estimated (or
historical) implied volatility surface. First, interpolate with respect to the target (K,T )
on the implied volatility surface to obtain a proper implied volatility. Second, calculate
the option value by the BS formula with the input of the implied volatility obtained
above.

(ii) Volatility is a function of S and/or t (T ):

Since the current time point t and the time to maturity T always change by the same
magnitude but in opposite directions, the volatility to be a function of T implies the
volatility to be a function of t.

∗ Nelson and Ramaswamy (1990) price options with the volatility as a function of S and
t.

(iii) Volatility movements conform the GARCH model:

∗ Ritchken and Trevor (1999) price options with the GARCH model.

(iv) For stochastic volatility processes:

∗ I propose a FDM to price options under stochastic volatility.

II. Option Pricing When Volatility is a Function of S and/or t

• The setting of the stock price process and the binomial tree model in Nelson and Ra-
maswamy (1990), “Simple Binomial Processes as Diffusion Approximations in Financial
Models,” Review of Financial Studies 3, pp. 393–430.

� The underlying asset price is assumed to be an Itô process: dS = µ(S, t)dt+σ(S, t)dZt.
(Note that both the drift and the volatility terms are functions of S and t and could be
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stochastic. In addition, S can be any kind of underlying asset rather than only the stock
price.)

Figure 6-5 Non-recombined issue of the binomial tree model when the volatil-
ity is not a constant
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If ( , ) , these two
stock prices are the same,
and the tree recombines

S t 

where q(St) =
E[St+∆t]−S−t+∆t

S+
t+∆t−S

−
t+∆t

=
St+µ(St,t)∆t−S−t+∆t

S+
t+∆t−S

−
t+∆t

.

(It is obvious that the non-constant σ(S, t) is the reason to make the binomial tree non-
recombined. As for µ(S, t), it only affects the upward and downward branching probabil-
ities for each node.)

• Main idea of Nelson and Ramaswamy (1990):

� Suppose X is a function of S and t, and X is twice differentiable with respect to S and
once differentiable with respect to t. According to the Itô’s Lemma:

dX(S, t) = (µ(S, t)
∂X(S,t)
∂S + 1

2σ
2(S, t)

∂2X(S,t)
∂S2 +

∂X(S,t)
∂t )dt+ (σ(S, t)

∂X(S,t)
∂S )dZt.

Deliberately set the volatility term to be 1:

⇒ ∂X(S,t)
∂S σ(St, t) = 1

⇒ X(S, t) =
∫
S

1
σ(K,t)

dK (a mapping between X and S)
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� Three-step process to build a recombined tree for S:

(i) Build the binomial tree for X first. Since the volatility term of X is a constant or even
equal to 1, the binomial tree for X recombines. (See Figure 6-6)

(ii) For each node, transform the value of X to the corresponding value of S such that
S(X, t) = {S : X(S, t) = X}.
(iii) The resulting binomial tree for S retain recombined (see Figure 6-6), and the upward

and downward probability for each node can be derived via q(St) =
E[St+∆t]−S−t+∆t

S+
t+∆t−S

−
t+∆t

=

St+µ(St,t)∆t−S−t+∆t

S+
t+∆t−S

−
t+∆t

.

Figure 6-6
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• Other implementation issues:

(i) σ(S, t) cannot be zero, otherwise the value of X will approach infinity.

(Since S is a stochastic process, σ(S, t) should not be zero. However, when the value of
S is very small, sometimes σ(S, t) is very close to 0, e.g., the CIR interest rate process.)

(ii) ∆t should be small enough to ensure that 0 < q < 1 and thus guarantee the binomial
tree of S to model the process S(t) properly.

(iii) There is no constraint for the negative value of X. However, for the underlying asset
price S, it should be nonnegative.
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(If you need to avoid negative S or sometimes the transformation function S(X, t) only
accepts positive values of X, e.g., S(X, t) = ln(X), the simplest modification you can try
is to let the volatility term of X to be a number far smaller than 1 and thus restrict the

variation range of X. More specifically, instead of setting
∂X(S,t)
∂S σ(St, t) = 1, you can

consider, for example,
∂X(S,t)
∂S σ(St, t) = 0.01.)

• Several examples for Nelson and Ramaswamy (1990):

� Example 1: Constant elasticity of variance (CEV) stock price process:

dS = µSdt+ σSγdZ, where 0 < γ ≤ 1.∥∥∥∥∥∥
The feature of CEV process:{
S > 1⇒ Sγ < S (higher S, lower volatility than the lognormal distribution)
S < 1⇒ Sγ > S (extermely lower S, higher volatility than the lognormal distribution)

.

⇒ X(S, t) = σ−1
∫
S
K−γdK = S1−γ

σ(1−γ)∥∥ If γ = 1, dS = µSdt+ σSdZ, X(S, t) = 1
σ lnS.

⇒ S(X, t) =

 [σ(1− γ)X]
1

1−γ if X > 0

0 o/w

⇒



St ≡ S(X, t)

S+
t+∆t ≡ S(X + J+

√
∆t, t+ ∆t)

S−t+∆t ≡ S(X − J−
√

∆t, t+ ∆t)

q∗ =
St+µSt∆t−S−t+∆t

S+
t+∆t−S

−
t+∆t

q =

 q∗ if 0 ≤ q∗ ≤ 1
0 if q∗ < 0
1 if q∗ > 1

.

∗ J+ and J− are introduced by Nelson and Ramaswamy (1990) to allow multiple jumps
such that in most cases, the E[St+∆t] is inbetween two following branches and thus the
upward probability q∗ is in [0, 1]. The rules to decide J+ and J− are as follows.

J+ =


the smallest, odd, positive, integer j s.t.

S(X + j
√

∆t, t+ ∆t)− S(X, t) ≥ µ(S, t)∆t if X < XL

1 if X ≥ XL

.
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∥∥∥∥∥∥∥∥∥∥∥

To prevent the explosive growth of the number of nodes on the binomial tree, the
upward multiple jumps are allowed to reach the nodes already on the binomial tree
only when X < XL. In addition, the increment of the underlying asset price of the
upward branch should be higher than the expected growth of the underlying asset
price. (For X ≥ XL, if the upward multiple jumps are allowed, new nodes should
be generated, which could result in the unexpected grow of the binomial tree.)

J−=


the smallest, odd, positive, integer j s.t.

S(X, t)− S(X − j
√

∆t, t+ ∆t) ≤ µ(S, t)∆t
or

S(X − j
√

∆t, t+ ∆t) = 0 (S should be nonnegative)

.

∥∥∥∥∥∥
The decrement of the underlying asset price of the downward branch should be smaller
than the expected growth (may be negative) of the underlying asset price. However, the
smallest underlying asset price which can be reached is 0 becuase S is nonnegative.

∗ Given fixed µ, σ, and γ, it is possible to identify a small enough ∆t to avoid the negative
branching probability issue in this simple model.

∗ I suggest to find a small ∆t first. If it is unattainable, the multiple jumps approach
suggested by Nelson and Ramaswamy (1990) is then considered.

� Example 2: dS = µ(S, t)dt+ σ(S, t)dZ, where µ(S, t) = µS and σ(S, t) = σS.

⇒ σ · S · ∂X∂S = 1⇒ ∂X = 1
σ ·

∂S
S

⇒ X(S) = 1
σ · lnS ⇒ S = eσX .

Therefore, for dX(S) = (µσ −
1
2σ)dt + 1 · dZ, X-tree can be built first. Next, S-tree can

be derived through the transformation S = eσX . In fact, the resulting S-tree is exactly
identical to the CRR binomial tree.

� Example 3: dS = µ(S, t)dt+ σ(t)SdZ, where σ(t) is a stepwise function of t defined as
follows.

Suppose the whole period is partitioned into 3 subperiods, and

σ(t) =


σ1 0 ≤ t ≤ t1

σ2 t1 < t ≤ t2

σ3 t2 < t ≤ T

.

(The step function of σt is useful to discribe the different stages of a growing firm, i.e.,
seed, growing, and matured stages of a firm.)
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Nelson and Ramaswamy (1990)⇒X(S, t) =


1
σ1

lnS ⇒ S = eσ1X 0 ≤ t ≤ t1

1
σ2

lnS ⇒ S = eσ2X t1 < t ≤ t2

1
σ3

lnS ⇒ S = eσ3X t2 < t ≤ T

.

(It is worth noting that for the 3 subperiods, the volatility terms of the X process are
all equal to 1. Therefore, the X-tree is identical to the one in Figure 6-7 regardless of
different subperiods. For different subperiods, only the transformation functions listed
above are not the same.)

Figure 6-7
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III. Stochastic Volatility (SV) Models

• Affine (jump-diffusion) SV models (e.g., Guo, Hung, and So (2009):
dS
S = µdt+

√
V dZS + (ex − 1)dqS − E[(ex − 1)dqS ],

dV = κ(θ − V )dt+ σV
√
V dZV + ydqV ,

where corr(dZS , dZV ) = ρSV .

(i) Correlated jumps

qS and qV are correlated Poisson counters with intensity λx,y,

x is the percentage jump in S and x ∼ ND(µ0 + µx,yy, σ
2
x,y),

y is the level jump in V and y ∼ Exp(θy),

E[(ex − 1)dqS ] = λx,y
eµ0+0.5σ2

x,y

1−θyµx,y − 1.

(ii) Independent jumps

qS and qV are independent Poisson counters with intensity λx and λy, respectively,

x is the percentage jump in S and x ∼ ND(ln(1 + µx)− 0.5σ2
x, σ

2
x),

y is the level jump in V and y ∼ Exp(θy),

E[(ex − 1)dqS ] = λxE[(ex − 1)]dt = λxµxdt.

∗ The introduction of −E[(ex − 1)dqS ] in the process of dS/S is to maintain the growth
rate of S to be µ.

∗ Only affine SV (jump-diffusion) models are tractable to derive analytical option pricing
formula (see Duffie, Pan, and Singleton (2000) or Guo, Hung and So (2009)).

• Non-affine SV models:
dS
S = µdt+

√
V dZS ,

(i) Damped CEV and CEV SV models (e.g., Hung, Ko, and Wang (2023))

dV = κ(θ − V )dt+ (σ1V
0.5 + σ2V

γ)D(V )dZV ,

where D(V ) = −e8V 4

.

∗ If σ1 = 0 and D(V ) = 1, the damped CEV SV model reduces to the CEV SV model
(non-affine).

∗ If σ2 = 0 and D(V ) = 1, the damped CEV SV model reduces to the Heston SV model
(affine).
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∗ When V is high, D(V ) approaches zero and the volatility term of the damped CEV
SV model approaches zero as well. Without the intervene of the volatility term, the
downward mean-reverting force from the linear drift term is effectively pronounced.

∗ Moreover, for the pure CEV SV model, if the exponent term γ is greater than 1, it
could result in an explosive scenario for some large values of V . In contrast, the DCEV
SV model eliminates this possibly explosive behavior with the help of a small D(V ) when
V is high and thus relaxes the constraint on estimating γ.

∗ In contrast, when V is low, it is almost impossible to encounter an explosive scenario
even though γ is greater than 1. Therefore, the damped CEV SV model reduces to a
CEV SV model without the constraint on γ.

(ii) Non-linear drift model (e.g., Christoffersen, Jacobs, and Mimouni (2010), Chourdakis
and Dotsis (2011), Mijatovic and Schneider (2014))

dV = (α0 + α1V + α2V
2 + α3V

−1)dt+ σV V
γdZV .

∗ The non-linear form of the drift term, α0 + α1V + α2V
2 + α3V

−1, is first proposed in
Ait-Sahalia (1996) for modeling the stochastic interest rate process. This form of non-
linear drift term is claimed to better capture the mean-reverting behavior of stochastic
variance.

∗ If α0 = α3 = 0 and γ = 3/2, the above model reduces to the 3/2N mode, which is
demonstrated in Christoffersen, Jacobs, and Mimouni (2010) to be an SV model with
superior fitting performance.

(iii) Log variance model (e.g., Durham (2013))

dV = [κ(θ − lnV ) + 0.5σ2
V ]V dt+ σV

√
V dZV .

∗ If Y = lnV , then dY = κ(θ − Y )dt+ σV dZV .

∗ The major advantage of the log variance model is to eliminate the possibility for V to
be negative, even with the presence of the discretization error.

∗ Masoliver and Perello (2006) and Bormetti, Cazzola, and Delpini (2010) argue that it is
better to approximate the probability distribution of stochastic variance with a lognormal
distribution.

IV. Option Pricing under GARCH Model

• Ritchken and Trevor (1999),“Pricing Option under Generalized GARCH and Stochastic
Volatility,” Journal of Finance 54, pp. 377–402.
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� Main idea:

(i) A trinomial tree framework for the log stock price is considered.

(ii) Unlike the standard trinomial tree framework introduced in Chapter 4, a grid structure
of log stock price is constructed first and thus the upward and downward tick changes are
fixed initially.

(iii) The most important originality of this paper is that the change of each branching
log stock price implies an innovation of the standard normally distributed variable in the
Wiener process. Next, the innovation is employed to update the conditional variance level
reaching that branch node.

(iv) Instead of recording all possible values of variances on each node, only several selected
representative variances are recorded on each node. During backward induction, the linear
interpolation method is employed to find the corresponding option values for the missing
variances.

� General settings:

(i) Nonlinear asymmetric GARCH (NGARCH)

ln(St+1

St
) = r + λ

√
ht − 1

2ht +
√
htυt+1,

ht+1 = β0 + β1ht + β2ht(υt+1 − C)2.

(The above two equations represent the NGARCH process under the physical measure,
in which ht represents the conditional variance process, λ is the market price of risk of
S, β0, β1, β2, and C are constants, and υt+1 follows the standard normal distribution)

Under the risk-neutral measure, the corresponding NGARCH process is as follows.

ln(St+1

St
) = (r − 1

2ht) +
√
htεt+1,

ht+1 = β0 + β1ht + β2ht(εt+1 − C∗)2.

where C∗ = C + λ, and εt+1 follows the standard normal distribution.∥∥∥∥ Change variable to yt by defining yt = ln(St)

⇒ Et[yt+1] = yt + r − 1
2ht and var(yt+1) = ht

(ii) For each ∆t, which is assumed to be 1 day in Ritchken and Trevor (1999),

(i) 2n + 1 branches are employed to span the normal distribution for yt+1, e.g., 3
branches are used if n = 1. Furthermore, the vertical spacing parameter between

node is defined as γn ≡ γ√
n
≡
√
h0√
n

. The illustration of the case of n = 1 is shown in

Figure 6-8.

(ii) The value of ht+1 is updated at the end of each ∆t.
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Figure 6-8
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(iii) η “multiple-sized” jumps are allowed such that the probabilities of the upward, mid-
dle, and downward branches are guaranteed to be in [0, 1]. The rule to decide η for any
variance ht is as follows.

η − 1 <
√
ht
γ ≤ η, where γ ≡

√
h0.
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(iv) For yt+1, 2n+ 1 branches span the corresponding normal distribution, i.e.,

yt+1 = yt + θηγn , θ = 0,±1,±2, ...,±n.

Therefore, each possible value of yt+1 implies a realized value of εt+1 through

εt+1 =
θηγn−(r−ht

2
)√

ht
,

and thus leads to an update of ht+1 as follows.

ht+1 = β0 + β1ht + β2ht[εt+1 − C∗]2.

(v) How to decide the probability for each branch?

(1) Partition ∆t (1 day in Ritchken and Trevor (1999)) into n intervals, and the
trinomial tree model is employed to model the movements of y for each interval.

(2) Therefore, if n = 2, there are 2n + 1 = 5 branches for the period of ∆t. Note
that although n intervals are considered in the period of ∆t, we do not consider the
intermediate value of y during ∆t, and instead we use directly the 2n+ 1 branches
for each ∆t.

(3) For each of the outgoing 2n+ 1 branches of yt, its probability equals the sum of
conditional probabilities of n-interval paths starting from yt and reaching that node.
The details to decide P (θ) ≡ Prob(yt+1 = yt + θηγn), for θ = 0,±1,±2, ...,±n, are
as follows.

p(θ) =
∑

ju,jm,jd

(
n

jujmjd

)
pjuu p

jm
m pjdd

s.t. n = ju + jm + jd

θ = ju − jd
where

pu = ht
2η2γ2 +

(r−ht
2

)
√

1
n

2ηγ ,

pm = 1− ht
η2γ2 ,

pd = ht
2η2γ2 −

(r−ht
2

)
√

1
n

2ηγ .

(Note that there are typos in the formulas for pu, pm, and pd in Ritchken and Trevor
(1999). To correct their formulas for pu, pm, and pd, you need to replace γn with γ
in their formulas, that yields exactly the same formulas as above.)
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∗ Illustration of the n-subperiod paths to reach yt+1 = yt + θηγn for different θ.

If n = 1, it is not necessary to make partitions for ∆t and the Ritchken and Trevor’s
model reduces to a trinomial tree model since for each ∆t, 2n + 1 = 3 branches are
considered.

For θ = 1, (ju, jm, jd) = (1, 0, 0).

For θ = 0, (ju, jm, jd) = (0, 1, 0).

For θ = −1, (ju, jm, jd) = (0, 0, 1).

If n = 2, the Ritchken and Trevor’s model becomes a pentanomial tree model since for
each ∆t, 2n+ 1 = 5 branches are considered.

For θ = 2, (ju, jm, jd) = (2, 0, 0).

For θ = 1, (ju, jm, jd) = (1, 1, 0).

For θ = 0, (ju, jm, jd) = (0, 2, 0) and (ju, jm, jd) = (1, 0, 1).

For θ = −1, (ju, jm, jd) = (0, 1, 1).

For θ = −2, (ju, jm, jd) = (0, 0, 2).

(vi) Forward induction process to build the stock price tree and derive the possible vari-
ances reaching each node.

� Note that there could be so many conditional variance levels for each node because
different paths reaching that node generates different variances.

� Since the total number of paths is at least 3N , where T/N = ∆t, in the case of
n = 1, we can infer that the number of paths grows exponentially.

� It is infeasible to record all conditional variances reaching each node due to the
availability of memory space in a PC and the concern of the efficiency problem.

� The solution proposed by Ritchken and Trevor (1999):
For each node, record only the maximum and minimum conditional variances among
all conditional variances generated by the paths reaching that node. In addition, M
interpolated representative conditional variances are equally-spaced placed from the
maximum to minimum conditional variances. The table of representative conditional
variances are constructed as follows.

h(i, j, k) =
M − k
M − 1

hmax(i, j) +
k − 1

M − 1
hmin(i, j), for k = 1, ...,M,

where hmax(i, j) and hmin(i, j) denote the maximum and minimum conditional vari-
ances reaching node(i, j).
∗ Based on these M interpolated representative conditional variances, the condi-
tional variances ht are updated in the next period of ∆t.
∗When M approaches infinity, the error caused by the above approximation can be
ignored.
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Figure 6-9 Lattice Model of Ritchken and Trevor (1999) Over Three Days.

10.96

10.96

10.96

10.96

10.52

10.52

10.95

10.95

10.57

10.53

10.96

10.13

12.27

10.52

10.95

10.95

13.46

10.13

10.60

9.77

11.70

10.12

12.27

10.51

13.44

10.95

12.29

12.29

12.28

10.57

11.71

11.71

13.48

13.48
1053.74

1042.76

1031.90

1021.16

1010.52

1000.00

989.59

979.28

969.08

S

6.9601

6.9496

6.9392

6.9287

6.9182

6.9078

6.8973

6.8868

6.8763

ln S

0.0105

0.0105

0.0105

h0 =10.96*10-5

10.52 10.13

10.52

10.52

10.96

11.71

0 1 2 3 Day t

12.27

11.395

10.52

η=2

η=1

Among 3 's of this node, 

two of them are with =2, 

and the other is with =1. 

Therefore, there are 5 

branches for this node.

th





1

1

1

1

1

2 's

1

3 's

1

2 's

t

t

t

t

t

h

h

h

h

h











var iance between 

0 and 1t t 

10.53

This figures shows the first three days of the first phase of the lattice for an NGARCH model with parameters r = 0,
λ = 0, β0 = 6.575× 10−6, β1 = 0.90, β2 = 0.04, and C = 0. The grid of values for the logarithmic price of the underlying,
y = lnS is determined by taking intervals of size γ =

√
h0 = 0.0105 around the log of the initial price S0 = 1000. In this

example, n=1, giving three possible paths from each node for a given conditional variance. Each node is represented by a
box containing two numbers. The top (bottom) number is the maximum (minimum) conditional variance (multiplied by
105) of all paths reaching that node. In this example M = 3, so for each node, one additional representative conditional
variance is inserted between the maximum and minimum conditional variances. Each of the three variances is examined
individually to determine whether the successor nodes are one or more units of γ higher and lower the examined node. The
formulas to update the conditional variance are as follows.

ht+1 = β0 + β1ht + β2ht(εt+1 − C∗)2 given h0 = 0.0001096,

where εt+1 =
jηγn−(r−ht

2
)

√
ht

and C∗ = C + λ.
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� Backward induction process for option pricing:

Step 1. Decide the payoff of each conditional variance of each terminal node. Since
the conditional variance is independent of the option value, the payoffs of different
conditional variances on each node are the same. See Figure 6-10.

Step 2. For every conditional variance h(i, j, k) on node(i, j) for i = N − 1, N −
2, . . . , 0,

(i) Find the evolutions of the conditional variance on the next time step to be

hnext(θ) = β0 + β1h(i, j, k) + β2h(i, j, k)

(
θηγn − (r − h(i, j, k)/2)√

h(i, j, k)
− c∗

)2

,

for θ = 0,±1,±2, . . . ,±n.

(ii) Suppose that hnext(θ) is inside the range [h(i+1, j+θη, kθ), h(i+1, j+θη, kθ−1)].
By the linear interpolation method, the option value Cθ for the conditional variance
hnext(θ) can be approximated as Cθ = wθC(i+ 1, j + θη, kθ) + (1− wθ)C(i+ 1, j +
θη, kθ− 1), where wθ = (h(i+ 1, j+ θη, kθ− 1)−hnext(θ))/(h(i+ 1, j+ θη, kθ− 1)−
h(i+ 1, j + θη, kθ)).

(iii) The continuation value for each h(i, j, k) is

C(i, j, k) = e−r
n∑

θ=−n

p(θ)Cθ.

If the feature of early exercise is taken into account, taking vanilla call options as
examples, the option value corresponding to h(i, j, k) becomes

max(C(i, j, k), ey(i,j) −K).

Step 3. Repeat Step 2 for all h(i, j, k)’s backward over the lattice model, the value of
C(0, 0, 1) will be the GARCH option price derived by Ritchken and Trevor (1999).

∗ See Figure 6-10 for a numerical example of the above backward induction process.
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Figure 6-10 Lattice for Pricing Three-Period At-The-Money Call Option.
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This figures shows the valuation of a three-period at-the-money European call option. Each node is represented by a box
containing five numbers. The top (bottom) number in the first column is the maximum (minimum) variance (multiplied
by 105) of all paths reaching that node. As for the second column, the option values corresponding to different conditional
variance levels are reported.
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V. Option Pricing under Stochastic Volatility

• The content in this section belongs to the advanced content.

• This section introduces an explicit FDM to price plain vanilla options given stochastic
volatility processes for stock prices.

• General setting for stochastic volatility:
dS
S = (r − q)dt+

√
V dZS ,

dV = µV dt+ σV dZV ,

where corr(dZS , dZV ) = ρSV . Taking the CEV SV model for example, µV = κ(θ − V )
and σV = σV γ . Next, define X = lnS and X(0) = lnS(0) and perform Itô’s Lemma to
yield

dX = (r − q − V
2 )dt+

√
V dZS = µXdt+ σXdZS .

• The PDE for the price of any derivative, f(X, V ), which can be expressed as a function
of X and V , is derived as follows:

µX
∂f
∂X + µV

∂f
∂V + ∂f

∂t + 1
2σ

2
X
∂2f
∂X2 + 1

2σ
2
V
∂2f
∂V 2 + ρSV σXσV

∂2f
∂X∂V = rf .

Figure 6-11 Discretized stock-variance-time space for the FDM.
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• Input parameters for the explicit FDM:

In addition to S(0), K, T , r, q, V (0), other required parameters are summarized as
follows.

1. n (the number of time steps) such that ∆t = T
n ,

2. Vmin = 0, V̄max is suggested to be 1,

3. nd (the number of partitioned intervals between V (0) and Vmin = 0), which is used to
determine ∆V = V (0)/nd,

4. nV = d V̄max−V (0)
∆V e+ nd (the number of partitioned intervals between Vmax and Vmin),

which is then used to determine Vmax = Vmin + nV ∆V ,

5. α (a multiplicative factor) such that ∆X =
√
αVmax∆t,

(α is suggested to be 3 and cannot be too small for obtaining convergent option values.)

6. nX = 2dβ
√
V ∗T

∆X e (the number of partitioned intervals between Xmax and Xmin), where
β ≥ 10 and V ∗ is the average of V (0) and the long-term mean of V ,

(Taking the CEV SV model for instance, V ∗ =
V (0)+θ

2 .)

7. Xmin = X(0)− nX
2 ∆X and Xmax = X(0) + nX

2 ∆X.

• Define

µX(k) = r − q − Vk
2 ,

σX(k) =
√
Vk,

µV (k) = κ(θ − Vk) (taking the CEV SV model for example),

σV (k) = σV γ
k (taking the CEV SV model for example),

and the PDE for f(X, V ) can be approximated by the explicit FDM as follows.

µX(k)
fi+1,j+1,k−fi+1,j−1,k

2∆X + µV (k)
fi+1,j,k+1−fi+1,j,k−1

2∆V +
fi+1,j,k−fi,j,k

∆t

+1
2σ

2
X(k)

fi+1,j+1,k−2fi+1,j,k+fi+1,j−1,k

∆X2 + 1
2σ

2
V (k)

fi+1,j,k+1−2fi+1,j,k+fi+1,j,k−1

∆V 2

+ρSV σX(k)σV (k)
fi+1,j+1,k+1−fi+1,j+1,k−1−fi+1,j−1,k+1+fi+1,j−1,k−1

4∆X∆V

= rfi,j,k,

for i = 0, ..., n− 1, j = 1, ..., nX − 1, and k = 1, ..., nV − 1.

Therefore, the backward induction method for the normal nodes is expressed as

fi,j,k = Akfi+1,j,k+1 +Bkfi+1,j,k + Ckfi+1,j,k−1 +Dkfi+1,j−1,k

+Ekfi+1,j+1,k + Fk(fi+1,j+1,k+1 − fi+1,j+1,k−1 − fi+1,j−1,k+1 + fi+1,j−1,k−1),

where

Ak = [
µV (k)
2∆V +

σ2
V (k)

2∆V 2 ]∆t/(1 + r∆t),
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Bk = [1− (
σ2
X(k)

∆X2 +
σ2
V (k)

∆V 2 )∆t]/(1 + r∆t),

Ck = [−µV (k)
2∆V +

σ2
V (k)

2∆V 2 ]∆t/(1 + r∆t),

Dk = [−µX(k)
2∆X +

σ2
X(k)

2∆X2 ]∆t/(1 + r∆t),

Ek = [
µX(k)
2∆X +

σ2
X(k)

2∆X2 ]∆t/(1 + r∆t),

Fk =
ρSV σX(k)σV (k)

4∆X∆V ∆t/(1 + r∆t),

for i = 0, ..., n− 1, j = 1, ..., nX − 1, and k = 1, ..., nV − 1.

• The remaining tasks are to deal with the boundary conditions for t = n∆t, Xj = Xmax,
Xj = Xmin, Vj = Vmax, Vj = Vmin, which will be discussed as follows individually.

∗ Boundary conditions for node(n, j, k) at t = n∆t = T :

fn,j,k equals option payoff corresponding to S(T ) = eXj ,

for j = 0, ..., nX and k = 0, ..., nV .

(For example, fn,j,k = max(eXj −K, 0) for calls.)

∗ Boundary conditions for node(i, nX , k) at Xj = Xmax:

fi,nX ,k =

{
eXmax −K for calls
0 for puts

,

for i = 0, ..., n− 1 and k = 0, ..., nV .

∗ Boundary conditions for node(i, 0, k) at Xj = Xmin:

fi,0,k =

{
0 for calls
K − eXmin for puts

,

for i = 0, ..., n− 1 and k = 0, ..., nV .

∗ Boundary conditions for node(i, j, nV ) at Vk = Vmax:

Using

∂f
∂V =

3fi+1,j,nV
−4fi+1,j,nV −1+fi+1,j,nV −2

2∆V ,

∂2f
∂V 2 =

fi+1,j,nV
−2fi+1,j,nV −1+fi+1,j,nV −2

∆V 2 ,

∂2f
∂X∂V =

3fi+1,j+1,nV
−4fi+1,j+1,nV −1+fi+1,j+1,nV −2

2∆V
−

3fi+1,j−1,nV
−4fi+1,j−1,nV −1+fi+1,j−1,nV −2

2∆V

2∆X

=
3fi+1,j+1,nV

−4fi+1,j+1,nV −1+fi+1,j+1,nV −2−3fi+1,j−1,nV
+4fi+1,j−1,nV −1−fi+1,j−1,nV −2

4∆X∆V ,

then one can obtain

µX(nV )
fi+1,j+1,nV

−fi+1,j−1,nV

2∆X +µV (nV )
3fi+1,j,nV

−4fi+1,j,nV −1+fi+1,j,nV −2

2∆V +
fi+1,j,nV

−fi,j,nV
∆t
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+1
2σ

2
X(nV )

fi+1,j+1,nV
−2fi+1,j,nV

+fi+1,j−1,nV

∆X2 + 1
2σ

2
V (nV )

fi+1,j,nV
−2fi+1,j,nV −1+fi+1,j,nV −2

∆V 2

+ρSV σX(nV )σV (nV )
3fi+1,j+1,nV

−4fi+1,j+1,nV −1+fi+1,j+1,nV −2−3fi+1,j−1,nV
+4fi+1,j−1,nV −1−fi+1,j−1,nV −2

4∆X∆V

= rfi,j,nV ,

for i = 0, ..., n− 1 and j = 1, ..., nX − 1.

Therefore, the backward induction method for these boundary nodes is expressed as

fi,j,nV = AnV fi+1,j,nV +BnV fi+1,j,nV−1 + CnV fi+1,j,nV−2 +DnV fi+1,j−1,nV

+EnV fi+1,j+1,nV +FnV (−4fi+1,j+1,nV−1+fi+1,j+1,nV−2+4fi+1,j−1,nV−1−fi+1,j−1,nV−2),

where

AnV = [1 + (
3µV (nV )

2∆V − σ2
X(nV )
∆X2 +

σ2
V (nV )
2∆V 2 )∆t]/(1 + r∆t),

BnV = [−2µV (nV )
∆V − σ2

V (nV )
∆V 2 ]∆t/(1 + r∆t),

CnV = [
µV (nV )

2∆V +
σ2
V (nV )
2∆V 2 ]∆t/(1 + r∆t),

DnV = [−µX(nV )
2∆X +

σ2
X(nV )
2∆X2 − 3ρSV σX(nV )σV (nV )

4∆X∆V ]∆t/(1 + r∆t),

EnV = [
µX(nV )

2∆X +
σ2
X(nV )
2∆X2 +

3ρSV σX(nV )σV (nV )
4∆X∆V ]∆t/(1 + r∆t),

FnV =
ρSV σX(nV )σV (nV )

4∆X∆V ∆t/(1 + r∆t),

for i = 0, ..., n− 1 and j = 1, ..., nX − 1.

∗ Boundary conditions for node(i, j, 0) at Vk = Vmin = 0:

When k = 0, the PDE is

µX(0) ∂f∂X +µV (0) ∂f∂V + ∂f
∂t + 1

2σ
2
X(0) ∂

2f
∂X2 + 1

2σ
2
V (0) ∂

2f
∂V 2 + ρSV σX(0)σV (0) ∂2f

∂X∂V = rf .

In most situations, σX(0) = σV (0) = 0, and µX(0) becomes a constant which is indepen-
dent of V , so the PDE is simplified to

µX(0) ∂f∂X + µV (0) ∂f∂V + ∂f
∂t = rf .

(If either σX(0) or σV (0) is not zero, a PDE different from above should be derived.)

The above PDE can be approximated with the implicit FDM as follows.

µX(0)fi+1,j+1,0−fi+1,j−1,0

2∆X + µV (0)−3fi+1,j,0+4fi+1,j,1−fi+1,j,2

2∆V + fi+1,j,0−fi,j,0
∆t = rfi,j,0.

Therefore, the backward induction method for these boundary nodes is expressed as

fi,j,0 = A0fi+1,j,2 +B0fi+1,j,1 + C0fi+1,j,0 +D0fi+1,j−1,0 + E0fi+1,j+1,0,

where

A0 = −µV (0)
2∆V ∆t/(1 + r∆t),

B0 =
2µV (0)

∆V ∆t/(1 + r∆t),

C0 = [1− 3µV (0)
2∆V ]∆t/(1 + r∆t),
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D0 = −µX(0)
2∆X ∆t/(1 + r∆t),

E0 =
µX(0)
2∆X ∆t/(1 + r∆t),

for i = 0, ..., n− 1 and j = 1, ..., nX − 1.
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