
Ch 5. Numerical Methods for Option Pricing

I. Monte Carlo Simulation for Multiple Variables

II. Confidence Interval and Variance Reduction

III. Finite Difference Method (有限差分法)

Appendix A. Solving Systems of Linear Equations

• This chapter formally explores the Monte Carlo simulation. In addition to the univariate
Monte Carlo simulation, the multivariate Monte Carlo simulation is also introduced.
Furthermore, the confidence interval for Monte Carlo estimates and various kinds of
variance reduction techniques are discussed.

• Next, I will introduce another lattice model, called the finite difference method, to com-
pute option prices through solving the partial differential equation of options numerically.

• From Chapter 2, Chapter 4, and this chapter, one can learn four basic methods to compute
option prices, including the closed-form solution, the binomial tree model, the Monte
Carlo simulation, and the finite difference method.

I. Monte Carlo Simulation for Multiple Variables

• Rand() or Rnd() draws uniformly distributed random samples.

In the field of the financial engineering, it is often to apply the Monte Carlo simulation
technique for pricing derivatives. Therefore, it is important to learn how to draw random
samples from different kinds of distributions, e.g., the normal distribution, the binomial
distribution, the Poisson distribution, etc. However, in most computer languages, like
VBA or C, the random sample generators, usually with the function name Rand() or
Rnd(), are to draw random samples from a (standard) uniform distribution as follows.

Figure 5-1 Illustration of the standard uniform distribution

0 1

()p x

x

5-1

• Since the normal distribution is the most common used distribution, here we only learn
how to transform uniformly distributed random samples to normally distributed
random samples. If you are interested in the transformation from uniformly distributed
random samples to random samples following other distributions, please refer to Chapter
7 in “Numerical Recipes in C,” by Press, Flannery, Teukolsky, and Vetterling.

• Four methods to draw random samples from the standard normal distribution.

� Method 1: In Excel, the combination of Norm.S.Inv(Rand()) is employed to transform
uniformly distributed random samples to standard normal distributed random samples,
where Rand() draws uniform random samples from [0, 1] and Norm.S.Inv() is the function
to calculate N−1().

Figure 5-2

0

1

()N x

x

1

The function Rand() draws a random sample from [0,1].

Then we use the inverse function (rand()) to derive a

simulated value of from the standard normal distribution,

where () is the cumulative d

N

x

N x

istribution function of the

standard normal distribution.

∗ In VBA, call “Application.WorksheetFunction.Norm S Inv(Rnd())” to generate nor-
mally distributed random samples. Note that the function Rnd() is provided by VBA
rather than Excel.

� Method 2: Repeatedly draw two samples X̃1 and X̃2 from uniform(0,1) until W̃ =
(2X̃1−1)2 +(2X̃2−1)2 < 1, then C̃(2X̃1−1) and C̃(2X̃2−1) are independently standard

normal distributed random variables, where C̃ =

√
−2(ln W̃)

W̃
.

5-2

� Method 3: Box-Muller method: Suppose X̃1 and X̃2 are drawn from uniform(0,1).

ỹ1 =
√
−2 ln X̃1 · cos(2πX̃2)

ỹ2 =
√
−2 ln X̃1 · sin(2πX̃2)

⇒ ỹ1 and ỹ2 are independently standard normal distributed random variables.

∗ It is the most recommended method if the programming language that you use provide
neither the function like the NORMSINV() in Excel nor the function to draw directly
standard normal distributed random variables.

� Method 4: Draw 12 random samples from uniform(0,1). Calculate the sum of these
12 random samples and then minus 6, and we can derive one random sample from the
standard normal distribution. This is also called a dirty method.

∗ It is the least recommended method due to the inefficiency of this method.

• How to draw random samples from a bivariate normal distribution as follows

(
r1

r2

)
∼ ND

((
0
0

)
,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
.

Step 1: Draw random samples z̃1 and z̃2 from

(
z1

z2

)
∼ ND

((
0
0

)
,

(
1 0
0 1

))
.

(Since z1 and z2 follow independently standard normal distributions, in practice we draw
z̃1 and z̃2 from ND(0, 1) individually.)

Step 2:

{
r̃1 = σ1 · z̃1

r̃2 = σ2 · (z̃1 · ρ+ z̃2 ·
√

1− ρ2)
.

5-3

• Two methods to draw random samples from a multivariate normal distribution.

� Method 1: Cholesky Decomposition Method

Decompose the covariance matrix C = ATA, where A =

[
α β
0 φ

]

⇒
[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

]
=

[
α2 αβ
αβ β2 + φ2

]
⇒

α = σ1

β = σ2ρ

φ = σ2

√
1− ρ2

⇒ [r̃1 r̃2]=[z̃1 z̃2]
[
A
]
.

∗ Based on the above result, it can be inferred that the aforementioned method for the
bivariate normal distribution is a special case of this Cholesky decomposition method.

∗ Here the bivariate normal distribution is taken as an example. It is straightforward to
extend this method to the n-variate case, i.e., [r̃1 r̃2 · · · r̃n] = [z̃1 z̃2 · · · z̃n]

[
A
]
, where

ATA equals the covariance matrix C for r1, r2, . . . , rn.

∗ The detailed algorithm for implementing the Cholesky decomposition method:

Step 1: a11 =
√
c11, a1j = c1j

a11
, j = 2, · · · , n

Step 2: aii =

√
cii −

∑i−1
k=1 a

2
ki

Step 3: aij = 1
aii

(cij −
∑i−1

k=1 akiakj), for j = i+ 1, i+ 2,, n

repeat Step 2 and Step 3 for i = 2, 3, ..., n− 1

Step 4: ann =

√
cnn −

∑n−1
k=1 a

2
kn

5-4

�Method 2: Eigenvalue Decomposition Method (The term eigenvalue is from the German
word “Eigenwert,” meaning “proper value” (固有值) or “characteristic value” (特徵值).
“Eigen” is a prefix means “own” (自我特有的), referring to something characteristic or
particular, e.g., a unique feature of a person or an object.)

C = ETΛE, where Λ =

λ1 0

λ2
. . .

0 λn

, and ETE = I

∥∥∥∥ λi’s are the eigenvalues of C and the ith-row of E is the unit-length eigenvector of C
corresponding to λi.

= ETΛ
1
2 Λ

1
2E, where Λ

1
2 =

√
λ1 0√

λ2
. . .

0
√
λn

= BTB, where B = Λ

1
2E

⇒ [r̃1 r̃2 · · · r̃n] = [z̃1 z̃2 · · · z̃n]
[
B
]

∗ The reason behind the Cholesky and Eigenvalue decomposition method:

var(

[
r1

r2

]
) = E

[[
r1

r2

] [
r1 r2

]]
= E

[
AT

[
z1

z2

] [
z1 z2

]
A

]
= ATE

[[
z1

z2

] [
z1 z2

]]
A

= AT IA = ATA = C.

∗ From the above demonstration, it is straightforward to infer that any decomposition
for the covariance matrix with the form of C = MTM can be used to generate correlated
random samples from the multivariate normal distribution.

5-5

II. Confidence Interval and Variance Reduction

• Confidence interval and standard error for the Monte Carlo simulation estimate:

� Standard deviation is a simple measure of the variability or dispersion of a population,
a data set, or a probability distribution. For N simulated random samples, the standard

deviation of this set can be calculated through σ̂ =

√∑N
i=1(xi − x̄)2/N .

� Standard error sE : The standard error of an estimation method is the standard
deviation of the sampling distribution associated with the estimation method.

� A sampling distribution is the probability distribution, under repeated sampling of the
population, of a given estimation. For example, consider a very large normal distributed
population. Assume we repeatedly draw sample sets with a given size from the population
and calculate the sample mean for each sample set. A different sample set yields a different
sample mean. The distribution of these means is the “sampling distribution of the sample
mean” (for the given sample size).

� For the estimates of the sample variance, skewness, kurtosis, etc., it is also possible to
derive the “sampling distributions” of these estimates.

� For the Monte Carlo simulation, since it is a method for estimating the mean, we can
compute the standard error for the mean results based on the Monte Carlo simulation.

�Method 1: The standard error of the mean is usually estimated by the sample standard
deviation divided by the square root of the sample size: sE = σ̂√

N
, where σ̂ is the sample

standard deviation, and N is the sample size.

� Method 2: Since the Monte Carlo simulation method is a process to estimate the
mean, we can repeat the Monte Carlo simulation method for several times, e.g., 20 to
30 times, to obtain a stable sampling distribution for the estimation of the mean. As
a consequence, the standard deviation of these repetitions is the standard error for the
Monte Carlo simulation method.

5-6

� Confidence interval comparison:

Method 1: sE,1 = σ̂√
N

for N = 10000 vs. Method 2: sE,2 = standard deviation of M

repetitions and each is with N = 10000 random samples:

The 95% confidence interval for the estimation based on N = 10000 random samples:

For Method 1, the 95% confidence interval is

[mean of 10000 random samples−2× sE,1, mean of 10000 random samples+2× sE,1].

For Method 2, the 95% confidence interval is

[mean of M repetitions−2× sE,2, mean of M repetitions+2× sE,2].

∗ According to the central limit theorem, the sampling distribution of the mean is asymp-
totically normal with Z2.5% = −1.96 and Z97.5% = 1.96. The use of ±2× sE is approxi-
mately correct and common in practice.

∗ The 95% confidence intervals generated from both methods are with a similar size
(see “Standard Error.xlsx”). However, Method 2 provides a more accurate mean, so
the 95% confidence interval of Method 2 is preferred. (Of course, Method 2 needs more
computational time since it repeats the Monte Carlo simulation method based on N =
10000 random samples for M times.)

∗ Method 2 is more intuitive:

To examine the confidence interval is to estimate how accurate for your method based on
10000 random samples. Computing the s.d. of the sampling distribution, i.e., Method 2,
is the most intuitive way to achieve the above goal.

∗ Sometimes, Method 1 does not work. See “Effect of Antithetic.xls” after understanding
the antithetic variate approach. The possible reason may be that the random samples
are no more independent after using the antithetic variate approach.

5-7

• Variance-reduction technique: approaches which can narrow the confidence intervals of
the Monte Carlo simulation.

(i) Antithetic variate approach (反向變異法): satisfying the zero mean and the symmetric
feature of the standard normal distribution

z̃1, z̃2, · · ·, z̃N
2

, z̃N
2

+1, · · ·, z̃N
‖ ‖

−z̃1 · · · − z̃N
2

(ii) Moment Matching: matching the first two moments of the standard normal distribu-
tion

Draw random samples z̃1, z̃2, · · · , z̃N︸ ︷︷ ︸ first.

the mean equals m (e.g., −0.003) and the s.d. equals s (e.g., 1.046)

Define ỹi = z̃i−m
s

⇒ ỹ1, ỹ2, · · · , ỹN︸ ︷︷ ︸
the mean equals 0 and the s.d. equals 1

(iii) Control variates

Suppose the goal is to estimate E[X]. Find a random variable Y such that E[Y] = µ.

Define a new random variable W ≡ X + β(Y − µ), and consider to estimate E[W].

⇒E[W] = E[X], and var(W) = var(X) + β2var(Y) + 2βcov(X, Y)

If β2var(Y) + 2βcov(X, Y) < 0, then var(W) < var(X). Under this criterion, we can

estimate E[W] instead of E[X], that gives us the same expectation value but a smaller

variance and thus a smaller confidence interval.∥∥∥∥∥∥∥∥∥∥
The equation of β2var(Y) + 2βcov(X, Y) is minimized when β = β∗ =

−cov(X,Y)
var(Y)

,

and the minimized value of this equation becomes
−cov(X,Y)2

var(Y)

⇒ var(W) = var(X)− cov(X,Y)2

var(Y)
= (1− ρ2

XY)var(X)

⇒ when ρXY is closer to ± 1,we can derive a smaller var(W)

� The first difficulty is to find the expectation of the random variable Y . (Note that we
need the true value for E[Y], so we cannot employ the Monte carlo simulation method to
estimate E[Y] here.)

5-8

� The second difficulty is to decide β. In practice, because the slope estimation of a

linear regression is
cov(X,Y)
var(Y)

theoretically, β is commonly determined to be the negative

of the slope-coefficient result of linearly regressing randomly-generated X over randomly-
generated Y . However, the β generated by this method is dependent on the drawn samples
of X and Y and thus itself is random such that the stability of the estimations of E[W]
and var(W) may be affected.

� Kemna and Vorst (1990), “A pricing method for options based on average asset values,”
Journal of Banking and Finance 14, pp. 113–129.

1. Suppose X is e−rT max(SA − K, 0) and Y is e−rT max(SG − K, 0), where SA is the
arithmetic average and SG is the geometric average along the stock path.

2. Since SA and SG are highly positive correlated, we set β = −1 in the control variates
method.

3. In addition, there is a Black-Scholes-like pricing formula for geometric average options
(introduced in Ch.10), and we can employ this formula to derive E[Y] = µ.

(iv) Empirical Martingale Simulation (EMS) (平賭過程配適模擬法): studying the rela-
tionship among simulated stock paths (Duan and Simonato (1998))

In the risk-neutral world, the discounted values of simulated asset prices should be a
martingale process theoretically. However, it is not always the case in practice. Moreover,
the violation of the martingale characteristic has the propagation feature, i.e., if the
simulated asset prices do not follow the martingale characteristic at some time point t,
the error will accumulate and thus the degree of violation of the martingale characteristic
will becomes more serious after t.

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

� Martingale process (a series of fair games)
A stochastic process X(t), t ≥ 0 is a martingale if E[|X(t)|] <∞ for t ≥ 0 and
E[X(t) | X(u), 0 ≤ u ≤ s] = X(s).

∗ By applying the tower rule of iterated conditional expectations, we can further derive
E[X(t)] = X(0).

� Consider X = e−rtS(t), and the idea of the EMS method is to adjust the simulated stock
prices such that E[X(t)] = X(0), which is equivalent to E[e−rtS(t)] = e−r0S(0) = S(0).

� Like the original Monte Carlo simulation, in the EMS method, the arithmetic average of
stock prices S(t) of all simulated paths is used to estimate E[S(t)]. Thus, the EMS is to
ensure that e−rt[arithmetic average of S(t)] = S(0) for each time point t.

5-9

Figure 5-3 Notion of the EMS method

2

2 0[]rt
te E S S

1

1 0[]rt
te E S S

0[]rT
Te E S S

0 1t 2t T

� Given N simulated stock price paths, the EMS method adjusts stock prices as follows,
where Ŝ and S∗ represent the stock prices before and after the adjustment.

S∗i (tj , N) = S0
1
N

∑N
i=1 e

−rtj Ŝi(tj ,N)
Ŝi(tj , N)∥∥∥∥ The subscript i denotes the i-th stock price path, and tj denotes the j-th

time point.

⇒ S∗0(t, N) = 1
N

N∑
i=1

e−rtS∗i (t, N) (for any time point t)∥∥∥∥ The subscript 0 means to compute the average of the present value of
the stock prices over the N simulated paths.

= 1
N

N∑
i=1

e−rt S0
1
N

∑N
i=1 e

−rtŜi(t,N)
Ŝi(t, N)

=S0

∗ If the simulated samples for the stock price process are perfect, i.e., they satisfy the
martingale characteristic already such that 1

N

∑N
i=1 e

−rtj Ŝi(tj , N) = E0[e−rtj Ŝ(tj)] = S0,

the above adjustment equation returns S∗i (tj , N) = Ŝi(tj , N). Under this ideal condition,
it is not necessary to adjust the original simulated samples for the stock price process.
However, it is almost impossible to meet this perfect condition.

∗ In fact, Duan and Simonato (1998) suggest a 4-step method to compute S∗i (tj , N). The
above method is identical to the 4-step method in Duan and Simonato (1998), but is
more efficient and intuitive.

5-10

• “Common random samples” method: If you intend to calculate the option value under
different variance-reduction techniques (or different parameter values), it is not suited
to create different random samples for each calculation, because you cannot distinguish
the difference between any two calculations being from the effect of different variance-
reduction techniques (or different parameter values) or from the effect of using different
random samples. The method of common random samples means to employ the same
set of random samples to calculate the option prices for different variance-reduction tech-
niques (or different parameter values) to avoid the above problem.

III. Finite Difference Method (有限差分法)

• Main idea:

The finite difference method (FDM) is initially proposed to solve partial differential equa-
tions numerically, and its main idea is to use finite difference (差分) to approximate the
partial differentiation (微分).

• General setting:

Here we apply the FDM to solve partial differential equations for derivatives mentioned

in Chapters 2 and 4, i.e., to solve ∂f
∂t + (r − q)S ∂f

∂S + 1
2σ

2S2 ∂
2f
∂S2 = rf .

Figure 5-4 Discretized stock-time plane for the FDM

0 t i t n t⋯ ⋯

⋮

⋮

0Δ�

1Δ�

�Δ�

�Δ�

⋅
�,�

∗ The stock-time (or S-t) plane is discretized into a grid of nodes. The examined time
points are 0,∆t, 2∆t, . . . , n∆t, and the examined stock prices are 0,∆S, 2∆S, . . . ,m∆S.
The numerical solution of f means to find the values for all fi,j , where i and j are the
indexes for the time and the stock price, respectively. If the grid size is small enough, it
is equivalent to derive a closed-form solution because given any values of S and t, one
can identify a corresponding node and thus obtain its value of f .

5-11

∗ Similar to the binomial tree model, the FDM proceeds from the maturity backward to
t = 0. Therefore, the first step of the FDM is to determine the payoff at maturity. Taking
the put option for example, fn,j = max(K − j∆S, 0), for j = 0, 1, ...,m.

∗ Next, the implicit and explicit FDMs are introduced.

(i) Implicit FDM:

For node(i, j),

∂f
∂S = fi,j+1−fi,j−1

2∆S ,

∂2f
∂S2 = (fi,j+1−fi,j

∆S − fi,j−fi,j−1

∆S)/∆S = fi,j+1−2fi,j+fi,j−1

∆S2 ,

∂f
∂t = fi+1,j−fi,j

∆t .

⇒ fi+1,j−fi,j
∆t + (r − q)(j∆S)fi,j+1−fi,j−1

2∆S + 1
2σ

2(j∆S)2 fi,j+1−2fi,j+fi,j−1

∆S2 = rfi,j ,

for j = 1, 2, . . . ,m− 1 and i = 0, 1, . . . , n− 1.

Figure 5-5

, 1i jf

,i jf

, 1i jf

1,i jf

,

1, 1,0

multinomial tree approach
(because depends on the

values of , ,)
i j

i m i

f
f f

⇒ ajfi,j−1 + bjfi,j + cjfi,j+1 = fi+1,j , and

 aj = r−q
2 j∆t− 1

2σ
2j2∆t

bj = 1 + σ2j2∆t+ r∆t

cj = −r−q2 j∆t− 1
2σ

2j2∆t

.

� Note that for each pair of successive time points i∆t and (i+ 1)∆t, there are (m− 1)
equations and able to be expressed as a linear system in the following matrix form.

5-12

m− 1
equations

m+ 1
unknowns

cm−1 bm−1 am−1 0 · · · 0
...

0 · · · 0 cj bj aj 0 · · · 0
...

0 · · · 0 c1 b1 a1

fi,m

...
fi,j+1

fi,j

fi,j−1
...

fi,0

=

fi+1,m−1

...

fi+1,j

...

fi+1,1

.

� However, since there is only m − 1 equations but we need to solve m + 1 values of
fi,j , for j = 0, 1, ...,m, at i∆t, we further assume the values of the uppermost nodes
f0,m, ..., fn−1,m and the lowermost nodes f0,0, ..., fn−1,0 to satisfy some boundary condi-
tions. Taking the call option as an example, f0,m = · · · = fn−1,m = m∆S −K (assuming
those nodes to be extremely in the money), and f0,0 = · · · = fn−1,0 = 0 (assuming
those nodes to be extremely out of the money). As a consequence, the system of linear
equations for any two successive time points becomes

m− 1
equations

m− 1
unknowns

bm−1 am−1 0 · · · 0
...

0 · · · cj bj aj 0 · · · 0
...

0 · · · 0 c1 b1

fi,m−1

...

fi,j

...

fi,1

=

fi+1,m−1 − cm−1fi,m

...

fi+1,j

...

fi+1,1 − a1fi,0

.

⇒ A(m−1)×(m−1)x(m−1)×1 = b(m−1)×1

⇒ x = A−1b

∗ Note that the matrix A is independent of time, i.e., independent of i. Therefore, it is
suggested to solve A−1 only once and store the result of A−1, which can then be used for
every iteration of the backward induction.

∗ In VBA, one can employ the functions of Application.WorksheetFunction.Mmult() and
Application.WorksheetFunction.Minverse() to calculate the matrix multiplication and in-
verse, respectively.

5-13

� Backward induction algorithm for the (implicit) FDM:

1. By setting fn,0, . . . , fn,m to be the payoffs at maturity of the examined derivatives,
e.g., fn,j = max(j∆S −K, 0) if a call option is considered.

2. Solve the above system of linear equations for any two successive time points backward
from n∆t to 0∆t. If the American-style option is considered, it needs to check fi,j =
max(fi,j , exercise value at node (i, j)).

3. The value of f(S0, 0) is the option value today.

∗ It is worth noting that the FDM generates not only the option value today, i.e, f(S0, 0),
but also the values of f(S, t) for any node on the S-t plane.

∗ The implicit FDM is more robust than the explicit FDM introduced next, i.e., the
implicit FDM does not need an extremely small ∆t for obtaining convergent results.

(ii) Explicit FDM (special assumption: ∂f
∂S and ∂2f

∂S2 at node(i, j) are assumed to be the

same as those at node(i+ 1, j). Thus, it can be inferred that this method needs a

smaller ∆t to minimize the error caused by the special assumption.):

For node(i, j),

∂f
∂S = fi+1,j+1−fi+1,j−1

2∆S ,

∂2f
∂S2 = fi+1,j+1−2fi+1,j+fi+1,j−1

∆S2 ,

∂f
∂t = fi+1,j−fi,j

∆t .

⇒ fi+1,j−fi,j
∆t + (r − q)(j∆S)fi+1,j+1−fi+1,j−1

2∆S + 1
2σ

2(j∆S)2 fi+1,j+1−2fi+1,j+fi+1,j−1

∆S2 = rfi,j ,

for j = 1, 2, · · · ,m− 1 and i = 0, 1, · · · , n− 1.

Figure 5-6

1, 1i jf

1, 1i jf

1,i jf
,i jf

,

1, 1 1, 1, 1

trinomial tree approach
(because depends only on

, , and)
i j

i j i j i j

f
f f f

5-14

⇒ fi,j = a∗jfi+1,j−1+b∗jfi+1,j+c
∗
jfi+1,j+1, and

a∗j = 1

1+r∆t(−
1
2(r − q)j∆t+ 1

2σ
2j2∆t)

b∗j = 1
1+r∆t(1− σ

2j2∆t)

c∗j = 1
1+r∆t(

1
2(r − q)j∆t+ 1

2σ
2j2∆t)

.

� The above (m− 1) equations can be expressed in the following matrix form.

c∗m−1 b∗m−1 a∗m−1 0 · · · 0
...

0 · · · 0 c∗j b∗j a∗j 0 · · · 0
...

0 · · · 0 c∗1 b∗1 a∗1

fi+1,m

...
fi+1,j+1

fi+1,j

fi+1,j−1
...

fi+1,0

=

fi,m−1

...

fi,j

...

fi,1

.

⇒ A(m−1)×(m+1)b(m+1)×1 = x(m−1)×1

∗ Note that in the above system, the m− 1 unknowns are fi,1, . . . , fi,m−1. Therefore, to
solve these unknowns, a matrix multiplication (rather than solving the system) is enough.

∗However, we still need the boundary conditions for the uppermost nodes f0,m, . . . , fn−1,m

and the lowermost nodes f0,0, . . . , fn−1,0 in the backward induction process.

∗ The explicit FDM is similar to the trinomial tree model and thus one could interpret
the coefficients, a∗j , b

∗
j , and c∗j , as the probabilities corresponding to each branch times

the discount factor 1
1+r∆t .

∗ Since the explicit FDM is similar to the trinomial tree model, it is not appropriate that
the coefficients, a∗j , b

∗
j , and c∗j , are smaller than 0. To avoid this problem, a small enough

value of ∆t can be determined in advance by ensuring all a∗j , b
∗
j , and c∗j being nonnegative

first.

• For both implicit and explicit FDMs, the value of fi,j sometimes may be negative (see the
example in Table 20.5 in Hull (2011)). Since the option provides the right to the holder,
the value of option should be positive. So, we can set fi,j = 0 when fi,j < 0 to minimize
this type of pricing error.

5-15

• The convergence criterion of the finite difference method depends on the relationship

between ∆t and ∆S. It is known that for a simpler PDE of ∂f
∂t = α2 ∂

2f
∂S2 , the finite

difference method converges as long as α2 ∆t
(∆S)2

≤ 1
2 . That means when ∆S is small, ∆t

should be much smaller to ensure the convergence of the solution.

• For our option pricing PDE, α2 = 1
2σ

2S2, and we have two more terms, rS ∂f
∂S and

rf . Although the option pricing PDE does not follow the above simpler form, it is
still necessary to maintain a proper relationship between ∆t and ∆S to make sure the
convergence of the FDM.

5-16

Appendix A. Solving Systems of Linear Equations

• Gaussian elimination: solving a system of linear eqautions

E1: x1 − x2 + 2x3 − x4 = − 8
E2: 2x1 − 2x2 + 3x3 − 3x4 = −20
E3: x1 + x2 + x3 = − 2
E4: x1 − x2 + 4x3 + 3x4 = 4

⇒

1 −1 2 −1
2 −2 3 −3
1 1 1 0
1 −1 4 3

x1

x2

x3

x4

 =

−8
−20
−2
4

A x = b

1 −1 2 −1
... −8

2 −2 3 −3
... −20

1 1 1 0
... −2

1 −1 4 3
... 4

⇓

E1 ×−2 + E2 → E2

E1 ×−1 + E3 → E3

E1 ×−1 + E4 → E4
1 −1 2 −1

... −8

0 0 −1 −1
... −4

0 2 −1 1
... 6

0 0 2 4
... 12

↑

Find a nonzero pivoting element in the second column. If there is no nonzero element for
a22, a32, and a42, it could be the case of no solution or infinitely many solutions. (It is
better to choose the largest |aij | to be the pivoting element. That choice can reduce the
round off error.)

⇓ E2 � E3
1 −1 2 −1

... −8

0 2 −1 1
... 6

0 0 −1 −1
... −4

0 0 2 4
... 12

⇓ E3 × 2 + E4 → E4

1 −1 2 −1
... −8

0 2 −1 1
... 6

0 0 −1 −1
... −4

0 0 0 2
... 4

 =⇒
back subsitution

x4 = 2
x3 = 2
x2 = 3
x1 = −7

5-17

• Gauss-Jordan elimination (This method can solve both Ax = b and A−1)

⇒

 1 2 −1
... 1 0 0

2 1 0
... 0 1 0

−1 1 2
... 0 0 1

E1 ×−2 + E2 → E2

E1 × 1 + E3 → E3

=⇒

 1 2 −1
... 1 0 0

0 −3 2
... −2 1 0

0 −3 1
... 1 0 1

E2 ×−1
3 → E2

=⇒

 1 2 −1
... 1 0 0

0 1 −2
3

... 2
3 −1

3 0

0 3 1
... 1 0 1

E2 ×−2 + E1 → E1

E2 ×−3 + E3 → E3

=⇒

 1 0 1
3

... 1
3

2
3 0

0 1 −2
3

... 2
3 −1

3 0

0 0 3
... −1 1 1

E3 × 1
3 → E3

=⇒

 1 0 1
3

... 1
3

2
3 0

0 1 −2
3

... 2
3 −1

3 0

0 0 1
... −1

3
1
3

1
3

E3 ×−1

3 + E1 → E1

E3 ×−2
3 + E2 → E2

=⇒

 1 0 0
... −2

9
5
9 −1

9

0 1 0
... 4

9 −1
9

2
9

0 0 1
... −1

3
1
3

1
3

‖

A−1=

 −2
9

5
9 −1

9
4
9 −1

9
2
9

−1
3

1
3

1
3

� For solving Ax = b, in addition to the performing the Gaussian (or Gauss-Jordon)
elimination, we can calculate A−1 by the Gauss-Jordon elimination first and then apply
x = A−1b to obtain the solution.

5-18

