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• This chapter is devoted to introduce the binomial tree model, which is also known as a
kind of lattice model. The lattice models, such as the binomial tree model introduced in
this chapter or the finite difference method introduced in the next chapter, are popular
numerical methods for pricing options, particularly for American-style options. They are
also flexible since only nominal changes of the payoff function are needed for dealing with
pricing complex, nonstandard options.

I. One-Period Binomial Tree

Figure 4-1
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(i) Constructing a portfolio: long ∆ shares and short 1 call
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Figure 4-2
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(ii) Deciding the value of ∆: if 22∆− 1 = 18∆ ⇒ portfolio is riskless

⇒ 4∆ = 1 ⇒ ∆ = 0.25.

(iii) Hence, at t = 0.25, the value of the portfolio is 22 · 0.25− 1 = 18 · 0.25 = 4.5

⇒ 20∆− c = 4.5e−r0.25, where ∆ = 0.25 and r = 0.12 ⇒ c = 0.633.

∗ Note that the risk free interest rate r emerges due to the using of no-arbitrage argument.

Figure 4-3
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∆ = cu−cd
S0u−S0d

⇒ cu−cd
S0u−S0d

S0 − c = (S0u
cu−cd

S0u−S0d
− cu)e−rT

⇒ c = cu−cd
u−d − ( cu−cd

u−d u− cu)e
−rT

⇒ c = e−rT ( cu−cd
u−d e

rT − (cu−cd)u
u−d + (u−d)

u−d cu)

⇒ c = e−rT ( (cu−cd)erT−cuu+cdu+ucu−dcu+cdd−cdd
u−d )

= e−rT ( (erT−d)cu
u−d + (u−d)cd

u−d −
(erT−d)cd

u−d )

= e−rT ( e
rT−d
u−d cu + (1− erT−d

u−d )cd)

( e
rT−d
u−d and 1− erT−d

u−d are like binomial probabilities, so they are denoted as p and 1− p.)
= e−rT (pcu + (1− p)cd).

∗ For different options, the above equation remains valid, but different payoffs cu and cd
should be considered.
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• It is worth noting that p is not the probability for cu (or for the upward movement of S).
However, p can be regarded as the probability for cu (or for the upward movement of S)
in the risk neutral world. This is because in the real world, if the expected stock return
is µ,

S0e
µT = S0u · q + S0d · (1− q)⇒ q =

eµT − d
u− d

.

Similarly, in the risk neutral world, since the expected returns for all securities are the
same and equal to r,

S0e
rT = S0u · p+ S0d · (1− p)⇒ p =

erT − d
u− d

.

Therefore, p and 1−p are termed as risk neutral probabilities in the binomial tree frame-
work.

• The option pricing equation c = e−rT (p · cu + (1 − p) · cd) in the binomial tree model is
consistent with the RNVR because both the expected growth rate of the underlying asset
and the discount rate of the option payoff are the risk free rate.

• One can use the upward and downward probabilities in the real world (q and 1 − q in
the binomial tree model), but it is almost impossible to identify a proper discount rate
to discount the expected payoff of options, i.e.,

c = e−?T (q · cu + (1− q) · cd).

In practice, for securities with more risk or uncertainty, it should apply higher discount
rates to future expected payoffs. Furthermore, it is well known that options are riskier
than their underlying assets due to the high-leverage characteristic for investing in options.
So, it is not suited to employ the expected return for the underlying asset, µ, to discount
the expected payoff of the option.

If we reconsider the numerical example of the one-period binomial tree in the beginning
of this chapter and further assume µ = 16%, then we can derive the probability q in the
real world to be 0.7041. Next by equalizing e−?T (q · cu + (1 − q) · cd) to be 0.633, which
is the true option value in the numerical example, we can solve the discount rate for the
option to be 42.58%.

In fact, the proper discount rates for expected payoffs of options depend not only on
the expected returns (µ) and volatilities (σ) of underlying assets but also on the different
K and T of options. As a consequence, it is very difficult (if it is possible) to derive
theoretical option prices directly in the real world.
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II. CRR Binomial Tree Model

• Lognormal property

If X is lognormally distributed, i.e., lnX follows a normal distribution with mean =
E[lnX] and variance = var(lnX), then E[X] = eE[lnX]+ 1

2
·var(lnX), and var(X) =

e2·E[lnX]+var(lnX) · (evar(lnX) − 1).

∵ lnST ∼ ND(lnS0 + (µ− σ2

2
)T, σ2T )

⇒ E[ST ] = S0e
µT , and var(ST ) = S2

0e
2µT (eσ

2T − 1).∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∵ lnSt+∆t ∼ ND(lnSt + (µ− σ2

2
)∆t, σ2∆t)

⇒ E[St+∆t] = Ste
µ∆t.

⇒ var(St+∆t) = S2
t e

2µ∆t(eσ
2∆t − 1)

≈ S2
t (1 + 2µ∆t)(1 + σ2∆t− 1) (because ex ≈ 1 + x when x→ 0)

= S2
t σ

2∆t+ S2
t (2µ∆t)(σ2∆t)

≈ S2
t σ

2∆t (because the term with ∆t2 is relatively too small).
(In the next paragraph, I will use this property to derive the parameters u, d, and p
in the CRR binomial tree framework.)

• Deriving u, d, and p in the CRR (Cox, Ross, and Rubinstein (1979)) binomial tree model,
which is the most common and famous binomial tree model.

Figure 4-4

tS

p

1 p

tS u

tS d

t

(i) Matching mean: p · Stu+ (1− p) · Std = E[St+∆t] = Ste
r∆t

⇒ p = er∆t−d
u−d .

4-4



(ii) Matching variance: var(St+∆t) = E[S2
t+∆t]− E[St+∆t]

2.

⇒ σ2∆t = p · u2 + (1− p) · d2 − [p · u+ (1− p) · d]2 (both sides ×(1/St)
2)

= p · u2 + (1− p) · d2 − p2 · u2 − 2 · p · (1− p) · u · d− (1− p)2 · d2

= u2 · (p− p2) + [(1− p)− (1− p)2] · d2 − 2 · p · (1− p) · u · d
= u2 · p · (1− p) + (1− p) · [1− (1− p)] · d2 − 2 · p · (1− p) · u · d
= p · (1− p) · [u2 − 2 · u · d+ d2] = p · (1− p) · (u− d)2

∥∥∥∥∥∥∥∥∥∥∥

p · (1− p) = p− p2 = er∆t−d
u−d −

e2r∆t−2·d·er∆t+d2

(u−d)2

= er∆t·u−u·d−er∆t·d+d2−e2r∆t+2·d·er∆t−d2

(u−d)2

= er∆t(u−d+2·d)−u·d−e2r∆t
(u−d)2 = er∆t(u+d)−u·d−e2r∆t

(u−d)2

⇒ σ2∆t = er∆t(u+ d)− u · d− e2r∆t

⇒ σ2∆t = er∆t(u+ 1
u
)− u · 1

u
− e2r∆t (by defining d = 1

u
)

⇒ u+ 1
u

= σ2∆t+1+e2r∆t

er∆t

= e−r∆tσ2∆t+ e−r∆t + er∆t∥∥ e−r∆t ≈ (1− r∆t), er∆t ≈ (1 + r∆t), and r · σ2 ·∆t2 → 0

≈ σ2∆t+ 2 (noting that the effect of r∆t on u disappears hereafter)

⇒ u2 − (σ2∆t+ 2)u+ 1 = 0

⇒ u =
σ2∆t+2±

√
(σ2∆t+2)2−4

2
= σ2∆t+2±

√
σ4∆t2+4σ2∆t+4−4

2
(σ4∆t2 → 0)

=σ2∆t
2

+ 1± σ
√

∆t∥∥∥∥∥∥
Since

√
∆t is far larger than ∆t for a small ∆t,

and σ2 is relatively smaller than σ

⇒ we can ignore the first term σ2∆t
2

≈ 1± σ
√

∆t

≈ e+σ
√

∆t (because u > 1 ⇒ u 6= e−σ
√

∆t).
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• Implementation of the CRR binomial tree model:

Figure 4-5
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• Problems of the CRR model: 1) p = er∆t−d
u−d = er∆t−e−σ

√
∆t

eσ
√

∆t−e−σ
√

∆t
is not necessary inside [0, 1]

unless ∆t is small enough. 2) The approximations used to derive var(St+∆t) as well as u
and d are vaild only when ∆t is very small.
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• Another binomial tree model proposed in Jarrow and Rudd (1983): by considering the

logarithmic stock price space and the constraint of p = 1/2, then u = e(r−σ
2

2
)∆t+σ

√
∆t and

d = e(r−σ
2

2
)∆t−σ

√
∆t can be solved as follows.

Figure 4-6
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∵ lnSt+∆t ∼ ND(lnSt + (r − σ2

2
)∆t, σ2∆t)

∴ E[lnSt+∆t] = lnSt + (r − σ2

2
)∆t, var(lnSt+∆t) = σ2∆t

Matching mean and variance of lnSt+∆t:

⇒
{
p(lnSt + lnu) + (1− p)(lnSt + ln d) = lnSt + (r − σ2

2
)∆t (1)

p(lnSt + lnu)2 + (1− p)(lnSt + ln d)2 − (lnSt + (r − σ2

2
)∆t)2 = σ2∆t (2)

In this model, p is fixed to be 0.5, and only u and d are left as unknowns.

From Eq. (1), we can derive

0.5 lnu+ 0.5 ln d = (r − σ2

2
)∆t

⇒ lnu = 2(r − σ2

2
)∆t− ln d

‖ define D = ln d and µ = (r − σ2

2
)∆t

⇒ lnu = 2µ−D.

Replacing lnu with 2µ−D in Eq. (2) yields

0.5(lnSt + 2µ−D)2 + 0.5(lnSt +D)2 − (lnSt + µ)2 = σ2∆t

⇒ (lnSt + 2µ−D)2 + (lnSt +D)2 − 2(lnSt + µ)2 = 2σ2∆t

⇒ D2 − 2µD + µ2 − σ2∆t = 0

⇒ D =
2µ±
√

4µ2−4(µ2−σ2∆t)

2
= µ± σ

√
∆t = ln d

⇒ lnu = µ∓ σ
√

∆t.

Because u > d ⇒

{
u = eµ+σ

√
∆t = e(r−σ

2

2
)∆t+σ

√
∆t

d = eµ−σ
√

∆t = e(r−σ
2

2
)∆t−σ

√
∆t

.
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• Advantages of this alternative binomial tree model: 1) there is no approximation; 2) p
maintains to be a positive number between 0 and 1; 3) the convergence rate is generally
better than the CRR model for pricing plain vanilla options.

• Disadvantages of this alternative binomial tree model is due to S0ud 6= S0: 1) Since there
is no stock price layer coinciding with the specified barrier price, it is less effecient to
price the family of barrier options. 2) Since there is no stock price layer equal to S0, it
is impossible to apply a quick method, known as the extended tree model, to estimate
some Greek letters, like ∆, Γ, and Θ.

• One possible trinomial tree structure proposed in Hull (2011):

u = eσ
√

3∆t, d =
1

u
, pu =

√
∆t

12σ2
(r − σ2

2
) +

1

6
, pm =

2

3
, pd = −

√
∆t

12σ2
(r − σ2

2
) +

1

6
,

through matching (i) mean of St+∆t, (ii) variance of St+∆t, (iii)
∑
pi = 1, (iv) d = 1

u
,

(v) pm = 2
3
, where (iv) and (v) are arbitrarily imposed constraints.

(Refer to Boyle (1986), Kamrad and Ritchken (1991), and Tian (1993) for more trinomial
tree structures.)

(Kamrad and Ritchken (1991) and Tian (1993) show that faster error convergence rates
can be attained if all of the three branching probabilities in the trinomial tree are close
or equal to 1

3
.)
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III. Estimation and Calibration of µ and σ

E[ln(ST /S0)] = (µ− σ2

2 )T 6= ln(E[ST /S0])
↑ because ‖ assume

lnST − lnS0 ∼ ND((µ− σ2

2 )T, σ2T ) KT

Assume S1 = S0e
η (T = 1 year) ⇒ E[ST /S0] = eKT

(η: continuonsly compounding return per annum) ⇒ E[ST ] = S0 e
KT

(S1 is stochastic⇒ η follows a distribution) (E[ST ] is a known number⇒ K is constant)

⇒ η = ln S1

S0
∼ ND(µ− σ2

2 , σ
2) ⇒ K = µ = expected growth rate according to

the lognormal property of ST on page 4-5

⇒ µ− σ2

2 is the expected value of the continuously

compounding return per annum

i. Considering two trading days, t and t+ 1, i. Considering two trading days, t and t+ 1,

we can derive St+1 = St · eηd and ηd = ln St+1

St
then E[St+1/St] = eKd and Kd = lnE[St+1/St]

ii. Calculating the average of ln St+1

St
for n days, ii. Calculating the average of St+1

St
for n days and

the result is the estimation of µd − σ2
d

2 . taking the natural log, we can estimate Kd = µd

1
n(ln S1

S0
+ ln S2

S1
+ · · ·+ ln Sn

Sn−1
) ln( 1

n(S1

S0
+ S2

S1
+ · · ·+ Sn

Sn−1
))

= 1
n(lnR1 + lnR2 + · · ·+ lnRn) = ln( 1

n(R1 +R2 + · · ·+Rn))

= 1
n(ln(R1 ·R2 · · ·Rn))

= ln(R1 ·R2 · · ·Rn)
1
n

⇒ The geometric average of daily returns ⇒ The arithemtic average of daily returns
estimate the continuously compounding estimates the daily expected growth rate µd
return µd − σ2

d

2

⇒ The standard deviation of the series of daily ⇒ The standard deviation of the series of St+1

St
ln S1

S0
, ln S2

S1
, . . . , ln Sn

Sn−1
generates the estimation is NOT the estimation of σd

of σd

∗ Note that the estimated results based on the daily data, i.e., µd and σd, need to be annualized to derive
the commonly-used annual estimates.
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• Implied volatility (the calibration (校準) of σ)

For any option pricing function c(S0, K, r, σ, T ), S0 is the stock price today, K and T can
be found in the option contract, and r is the risk-free rate corresponding to the time to
maturity T . As for σ, it is usually estimated based on the historical stock prices.

However, the market price of an option reflects the consensus of the forward-looking
σ of market participants and may not equal the theoretical option value based on the
historical σ. Through equalizing c(S0, K, r, σ, T ) and the market option price, it is possible
to calibrate σ from the forward-looking viewpoint.

The value of σ∗ satisfying f(σ∗) ≡ c(S0, K, r, σ
∗, T )−market option price = 0 is called

the implied volatility. Here two root-finding algorithms are introduced to solve for the
implied volatility.

• Bisection Method

First find [an, bn] such that f(an)f(bn) < 0. The iterative two steps to find [an+1, bn+1]
are as follows.

(i) Calcuate xn = an + bn−an
2

(ii) If f(an)f(xn) < 0⇒ an+1 = an, bn+1 = xn

else⇒ an+1 = xn, bn+1 = bn

• Newton’s Method

xn+1 = xn − f(xn)
f ′(xn)∥∥∥∥∥∥∥

Based on the first-order Taylor series: f(x) = f(xn) + f ′(xn)(x− xn)
(Find the root of f(x), i.e., solve f(x) = 0.)

⇒ −f(xn) = f ′(xn)(x− xn)⇒ x = xn+1 = xn − f(xn)
f ′(xn)∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Quadratical convergence:

According to the second-order Taylor series, f(x) = f(xn) + f ′(xn)(x− xn) +
f ′′(ξ)

2 (x− xn)2,

where ξ is between xn and x.

Solve f(x) = 0:

⇒ x− xn +
f(xn)
f ′(xn)

= − f ′′(ξ)
2f ′(xn)

(x− xn)2

⇒ x− xn+1 = − f ′′(ξ)
2f ′(xn)

(x− xn)2

(Suppose | f
′′(ξ)

2f ′(xn)
| is bounded by a finite number M , i.e., | f

′′(ξ)
2f ′(xn)

| ≤M <∞.)
⇒|x− xn+1 | ≤M |x− xn |2

(The error is smaller than the product of a finite number and the square of the error of

the n-th iteration.)
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IV. Dividends and Option Pricing

• This section introduces how to modify the option pricing models if the dividend yield q
or known cash dividends D at the pre-specified time point t are considered:

Table 4-1 Three Different Models for Dividend Payments

Suppose the time 

point today is 0 

Black-Scholes Model Binomial Tree Model 

European European American 

Model 1: 

Dividend yield � �� ← ���
��� 

�� ← ���
��� or 

	 =
�����
∆� − �

� − �
 
	 =

�����
∆� − �

� − �
 

Model 2: 

Known cash 

dividends at � as a 

percentage � of �� 

not available Figure 4-8 Figure 4-8 

Model 3: 

Known cash 

dividends � at � 

�� ← �� − ��
��� 

�� ← �� − ��
��� 

or Figure 4-10 
Figure 4-10 

 

• Model 1: dividend yield q

It is known that the distributions of ST are the same under

{
S0 + paying dividend yield q

S0e
−qT + no dividend payment

.

Figure 4-7
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� Analytical formula obtained by replacing S0 with S0e
−qT in the Black-Scholes formula:

⇒ c = S0e
−qTN(d1)−Ke−rTN(d2), p = Ke−rTN(−d2)− S0e

−qTN(−d1),

where d1 =
ln(S0/K)+(r−q+σ2

2
)T

σ
√
T

, d2 =
ln(S0/K)+(r−q−σ

2

2
)T

σ
√
T

, and d2 = d1 − σ
√
T .

� The PDE for (S0 + paying dividend yield q):

Given dS
S = (µ− q)dt+ σdZ, we have dS = (µ− q)Sdt+ σSdZ.

(Note that S denotes the ex-dividend underlying asset price.)

If f(S, t) is the price for any derivative, according to the Itô’s Lemma,

df = (∂f∂t + ∂f
∂S (µ− q)S + 1

2
∂2f
∂S2σ

2S2)dt+ ∂f
∂SσSdZ.

Construct a portfolio π:

−1 derivative

+ ∂f
∂S shares

⇒ π = −f + ∂f
∂SS ⇒ dπ = −df + ∂f

∂SdS + ∂f
∂SSqdt (including received dividends)

(where ( ∂f∂SS)qdt is the dividend from holding ( ∂f∂SS) in [t, t+dt])

= (−∂f∂t −
1
2
∂2f
∂S2σ

2S2 + ∂f
∂SSq)dt.

Due to the no-arbitrage argument,

dπ = rπdt

⇒ (−∂f∂t −
1
2
∂2f
∂S2σ

2S2 + ∂f
∂SSq)dt = r(−f + ∂f

∂SS)dt

⇒ ∂f
∂t + (r − q)S ∂f

∂S + 1
2σ

2S2 ∂
2f
∂S2 = rf .

You can check that the formulas shown at the top of this page are the solutions of the
above PDE given the boundary conditions being max(ST −K, 0) and max(K−ST , 0) for
the call and put options, respectively.

∗ When the dividend yield q is present, it can be found that (r − q)S ∂f
∂S replaces rS ∂f

∂S
in the original PDE (without dividend yield) on p. 2-2. However, it does not mean to
replace r with r − q in the PDE, because the right-hand side of the above PDE remains
to be rf . The truth is that for the underlying asset S, the expected growth rate is from
r to become r − q, but the discount rate for the derivative f is still r.
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� For the binomial tree model

Method 1: replace S0 with S0e
−qT + no dividend payment

Method 2: change the risk neutral probability p

p · Stu+ (1− p) · Std = Ste
(r−q)∆t ⇒ p =

e(r−q)∆t − d
u− d

∗ However, during the backward induction phase, we still use r to discount the expected
option value at the next time point, i.e., f = e−r∆t[p · fu + (1 − p) · fd] (For European
options, both above methods generate correct results, but for American options, only the
second method can generate correct results.)

• Model 2: known cash dividends as a percentage δ of the stock price at the time point t
(In practice, it is rare for companies to distribute cash dividends in this way.)

� For the Black-Scholes formula, it is unavailable to deal with this problem.

� For the binomial tree model, it is simple to deal with this problem (see Figure 4-8).

Figure 4-8
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• Model 3: known cash dividends D at time point t

� For the Black-Scholes formula, replace S0 with S0 −De−rt.
� For the binomial tree model,

Method 1: replace S0 with S0 −De−rt. However, this method only works for European
options, but it cannot be applied to pricing American options.

(This is because the distributions of Sτ (τ ≥ t) are the same under

{
S0 + paying D dollars at t
S0 −De−rt + no dividend payment

.)

Method 2: deduct the known dividend D from all stock prices on the divided payment
date. This method cannot work because it makes the tree to be non-recombined.

Figure 4-9
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Method 3: this method can maintain the recombined feature of the binomial tree

Figure 4-10
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Define S∗0 = S0 −De−r(t−t0) = S0 −De−rt

Step 1: build S∗-tree following the traditional way, but it should be noted that in

theory σ∗ = σ · S0/(S0 −De−r(t−t0)), where σ∗ is the volatility for the

stochastic part of the stock price and σ is the total volatility of the stock

price.

(For a different volatility σ∗, we should derive new u∗, d∗, and p∗ in theory.

In practice, however, it is rare to calculate σ∗. The first reason is that the

difference between σ∗ and σ is minor. The second reason is that since σ

is an estimated value based on the historical data, performing the above

adjustment will not necessarily lead to a better estimation for σ∗ in the

forward-looking sense.)

Step 2: for ti < t, replace S∗ti with S∗ti +De−r(t−ti)

(Since S∗0 = S0 −De−r(t−t0) = S0 −De−rt in Step 1, S∗-tree is the same as

the tree in Method 1 after t, which formulates the stock price process after

the dividend payment appropriately. However, the stock prices before t are

not consistent with the stock price process before the dividend payment,

i.e., S∗0 6= S0 and E[S∗ti ] 6= E[Sti ] for ti < t. Therefore, the adjustment in

Step 2 should be performed.)
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• Currency option

� Replace the dividend yield q with the foreign risk-free rate rf

(Because the underlying asset St is a dollar of the foreign currency in domestic dollars,

and holding the foreign currency can earn the foreign risk-free rate, a foreign currency

is analogous to a stock paying a known dividend yield.)

� c = S0e
−rfTN(d1)−Ke−rTN(d2),

where d1 =
ln(S0/K)+(r−rf+σ2

2
)T

σ
√
T

and d2 = d1 − σ
√
T .

• Futures options

� Call holders: have the right to enter a long position futures with the deliver price to

be FT and receive cash FT −K if FT ≥ K, where FT is the latest settlement futures

price before T (usually FT is the closing price on the date T ) and K is the strike price

in futures options.

� Put holders: have the right to enter a short position of futures with the deliver price

to be FT and receive cash K − FT if FT ≤ K.

∗ Since a futures contract is worth zero when it is first created (in the above cases, it is
at T ), it can be concluded that the payoff of futures option is similar to that of exercising
plain vanilla options, and the only difference is to replace ST with FT . This observation
implies that we can develop the pricing formula for futures options by following the same
way to develop the option formula for plain vanilla options.
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� Black-Scholes formula for futures options:

Suppose the futures price follows the geometric Brownian motion: dF
F = µdt+ σdZ

c(F, t) is the call on futures, and according to the Itô’s lemma

⇒ dc = (∂c∂t + ∂c
∂F µF + 1

2
∂2c
∂F 2σ

2F 2)dt+ ∂c
∂F σFdZ

Construct portfolio π = −c+ ( ∂c∂F )F = −c (noting the initial value of futures is 0)

dπ = −dc+ ( ∂c∂F )dF = −(∂c∂t + 1
2
∂2c
∂F 2σ

2F 2)dt = rπdt = r(−c)dt

⇒ ∂c
∂t + 1

2
∂2c
∂F 2σ

2F 2 = rc.

(Comparing with the PDE for stock options, these is no such term ∂c
∂F (r − q)F .)

Thus, one can set q = r and S0 = F0 in the Black-Scholes formula to derive the formula

for futures options.)

c = e−rT [F0N(d1)−KN(d2)], where d1 =
ln(F0/K)+σ2·T

2

σ
√
T

and d2 = d1 − σ
√
T .

� Binomial Tree

Because q = r, we derive p = e(r−q)∆t−d
u−d = 1−d

u−d (Remember that we still use r as the

discount rate for the payoff of the futures options.)∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Another way to derive p
Figure 4-11

0Futures (at )
1                    

F

c


 
  

0 0( ) uF u F c   

0 0( ) dF d F c   

0 0

 = u dc c

F u F d


 


“=”

value( ) c  
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

⇒ −c = [∆(F0u− F0)− cu]e−rT (the initial value of the futures is 0)

⇒ c = e−rT (p · cu + (1− p) · cd), where p = 1−d
u−d

• The Black-Scholes model as well as the binomial tree model are versatile models:

Treat stock index, currency, and futures like a share of stock paying a dividend yield q.

For stock index options: q= average dividend yield on the index over the option life.

For currency options: q = rf .

For futures options: q = r.
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V. Introduction of Combinatorial Method

• Combinatorics (組合數學) is a branch of pure mathematics concerning the study of dis-
crete (and usually finite) objects. Aspects of combinatorics include “counting” the objects
satisfying certain criteria, deciding when the criteria can be met, or finding “largest”,
“smallest”, or “optimal” objects.

• Combinatorial method for European options

Based on the binomial tree framework, applying the combinatorial method is far faster
than the backward induction procedure. In fact, it is not necessary to build the binomial
tree in the combinatorial method, which is another advantage of the combinatorial method
because is can save memory space for computer programming.

Figure 4-12
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European option value = e−rT
n∑
j=0

(
n
j

)
pn−j(1−p)jmax(S0u

n−jdj−K, 0), where

(
n
j

)
,

also denoted as Cn
j , is the combination of j from n, u = eσ

√
∆t, d = e−σ

√
∆t, and p =

e(r−q)∆t−d
u−d .

∗ For the binomial tree model, its complexity is O(n2), whereas for the above combina-
torial method, the complexity is O(n). The difference of required computational time is
substantial for a large number of n, e.g., n > 5000.
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Appendix A. Binominal Tree Model for Jump-Diffusion Processes

• The content in this appendix belongs to the advanced content.

• Binomial tree model for the jump-diffusion process in Amin (1993):

� Consider Merton’s (1976) lognormal jump-diffusion process as follows.

dS
S

= (r − q − λKY )dt+ σdZ + (Y − 1)dq,

where KY = E[Y − 1] and lnY ∼ ND(µJ , σ
2
J). By the Itô’s lemma,

d lnS = (r − q − 1
2
σ2 − λKY )dt+ σdZ + lnY dq = αdt+ σdZ + lnY dq.

� A modified lattice model based on Amin (1993):

Figure 4-13
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� Backward induction:

Figure 4-14

∗ Define the branching probabilities as follows.

p(k) =


prob(lnSt+∆t − lnSt = α∆t+ σ

√
∆t) = (1− λ∆t)pu + λ∆t∆N(k)

prob(lnSt+∆t − lnSt = α∆t− σ
√

∆t) = (1− λ∆t)pd + λ∆t∆N(k) ,

prob(lnSt+∆t − lnSt = α∆t+ kσ
√

∆t) = λ∆t∆N(k), for −MJ ≤ k ≤MJ

where ∆N(k) = N((α∆t+ (k+ 1
2
)σ
√

∆t− µJ)/σJ)−N((α∆t+ (k− 1
2
)σ
√

∆t− µJ)/σJ)

if k 6= ±MJ , MJ ≡ int( 3σJ
σ
√

∆t
), ∆N(MJ) = 1−N((α∆t+ (MJ − 1

2
)σ
√

∆t−µJ)/σJ), and

∆N(−MJ) = N((α∆t− (MJ − 1
2
)σ
√

∆t− µJ)σJ).

(Note that using λ∆t∆N(k) for −Mj ≤ k ≤ MJ in the above captures the effect of the
jump component lnY dq in the d lnS process.)

(Note that the definitions of p(k)′s here are slightly different from those in Amin (1993).)
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∗ For the remaining diffusion process, d lnS = αdt + σdZ, determine pu and pd by matching
its mean and variance

puStu+ pdStd = Ste
α∆t

puS
2
t u

2 + pdS
2
t d

2 − (puStu+ pdStd)2 = puS
2
t u

2 + pdS
2
t d

2 − (Ste
α∆t)2 = S2

t σ
2∆t,

pu + pd = 1

where u = eα∆t+σ
√

∆t and d = eα∆t−σ
√

∆t. Analogous with the CRR binomial tree model,
we can infer

pu = eα∆t−d
u−d .

∗However, if we consider the probabilities of (1 − λ∆t)pu and (1 − λ∆t)pd for the upward
and downward branches, respectively, when the jump component is introduced, the mean
and variance generated by the probabilities of (1 − λ∆t)pu and (1 − λ∆t)pd are no longer
Ste

α∆t and S2
t σ

2∆t:
(1− λ∆t)puStu+ (1− λ∆t)pdStd = (1− λ∆t)Ste

α∆t

(1− λ∆t)puS
2
t u

2 + (1− λ∆t)pdS
2
t d

2 − [(1− λ∆t)Ste
α∆t]2 ≈ (1− λ∆t)S2

t σ
2∆t,

(1− λ∆t)pu + (1− λ∆t)pd = (1− λ∆t)

For the variance equation, it can be rewritten as (1− λ∆t)[puS
2
t u

2 + pdS
2
t d

2 − (1− λ∆t)
(Ste

α∆t)2] ≈ (1− λ∆t)S2
t σ

2∆t, if ∆t is small such that (1− λ∆t) ≈ 1.

Thus, the standard deviation become
√

(1− λ∆t)Stσ
√

∆t. By comparing with the mean,
(1− λ∆t)Ste

α∆t, one can find that the deviation of the mean from its true value is more
serious than the deviation of the standard deviation from its true value because

√
(1− λ∆t)

is closer to 1 than (1− λ∆t) when ∆t is small.

∗ To offset the above undesirable effects, we should solve pu and pd in the following system of
equations.

puStu+ pdStd = Steα∆t

1−λ∆t

puS
2
t u

2 + pdS
2
t d

2 − (puStu+ pdStd)2 =
S2
t σ

2∆t

1−λ∆t

pu + pd = 1

∗ In Amin (1993), only the adjustment for the mean is considered, i.e., he solves the proba-

bility pu with puStu+ pdStd = Steα∆t

1−λ∆t
and obtains

pu =
eα∆t

1−λ∆t
−d

u−d .
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∗ Option value of a node can be expressed as

Option value of lnSt

=
∑

−MJ≤k≤MJ

p(k) · (option value for lnSt+∆t = lnSt + α∆t+ kσ
√

∆t)

� To consider the adjustment for the variance, a simple method of adjusting the grid size of
the multinomial tree can achieve this goal. By defining σ∗ = σ√

1−λ∆t
, u∗ = eα∆t+σ∗

√
∆t, d∗ =

eα∆t−σ∗
√

∆t, one can derive the following tree structure and the corresponding branching
probabilities.

Figure 4-15
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p∗(k) =


prob(lnSt+∆t − lnSt = α∆t+ σ∗

√
∆t) = (1− λ∆t)p∗u + λ∆t∆N(k)

prob(lnSt+∆t − lnSt = α∆t− σ∗
√

∆t) = (1− λ∆t)p∗d + λ∆t∆N(k) ,

prob(lnSt+∆t − lnSt = α∆t+ kσ∗
√

∆t) = λ∆t∆N(k), for −MJ ≤ k ≤MJ

where ∆N(k) = N((α∆t+(k+ 1
2
)σ∗
√

∆t−µJ)/σJ)−N((α∆t+(k− 1
2
)σ∗
√

∆t−µJ)/σJ) if k 6=
±MJ , MJ ≡ int( 3σJ

σ∗
√

∆t
), ∆N(MJ) = 1−N((α∆t+(MJ−1

2
)σ∗
√

∆t−µJ)/σJ), ∆N(−MJ) =

N((α∆t− (MJ − 1
2
)σ∗
√

∆t− µJ)/σJ), and p∗u =
eα∆t
√

1−λ∆t
−d∗

u∗−d∗ and p∗d = 1− p∗u.
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