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• This chapter introduces two methods to derive the Black-Scholes formula. The traditional
method solves a partial differential equation and thus calculates the integral over the log-
normally (or normally) distributed underlying variable. However, it is difficult to extend
this method to price other options, e.g., path dependent options or rainbow options.

• Another method, the martingale pricing method (MPM), will be introduced in this chap-
ter as well. Since this method does not involve any integration, the calculation process is
simple. Furthermore, it is straightforward to extend this method to price other options.
Although the calculation process of the MPM is simple, it is not easy to understand
this method because the MPM employs the technique of changing measure for stochastic
processes.

I. Partial Differential Equation for Derivatives

• The partial differential equation (PDE) for derivatives:

dS
S = µdt+ σdZ

⇒ dS = µSdt+ σSdZ

If f(S, t) is the price for any derivative, according to the Itô’s Lemma,

df = (∂f∂t + ∂f
∂SµS + 1

2
∂2f
∂S2σ

2S2)dt+ ∂f
∂SσSdZ.
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Construct a portfolio π:

−1 derivative

+ ∂f
∂S shares

⇒ π = −f + ∂f
∂S · S ⇒ dπ = −df + ∂f

∂SdS = (−∂f∂t −
1
2
∂2f
∂S2σ

2S2)dt

(Since there is no dZ in dπ, holding π is without risk and should earn the risk free rate
for an infinitesimal time period dt due to the no-arbitrage argument.)

⇒ dπ = rπdt

⇒ (−∂f∂t −
1
2
∂2f
∂S2σ

2S2)dt = r(−f + ∂f
∂SS)dt

⇒ ∂f
∂t + rS ∂f

∂S + 1
2σ

2S2 ∂
2f
∂S2 = rf .

Recall that I mentioned in Chapter 1 that df is not what we should care about, and
instead we are interested in the behavior of f given the time point t and the stock price
St, i.e., to derive the solution of f(St, t).

Taking the call option for example, it should satisfy the boundary condition that f(ST , T ) =
max(ST −K, 0) when t = T . The Black-Scholes formula is to find the analytic solution
f(St, t) to satisfy the above partial differential equation at any time point t as well as the
boundary condition at T .

In addition to the Black-Scholes formula, it is possible to solve this PDE via other nu-
merical methods, such as the finite difference method introduced in Chapter 5.

• Note that since the underlying asset is tradable, we can construct a portfolio to elimi-
nate the terms including dZ in the derivative and the underlying asset. Therefore, we
can introduce r into the the partial differential equation. If the underlying asset is not
tradable, we need to employ two derivative assets (sharing the same dZ) to form a risk
free portfolio by eliminating dZ terms. During this process, the “market price of the risk”
of the underlying asset can be introduced as well.

• (Advanced content) The PDE for derivatives under the following jump-diffusion process.

dS
S = (µ− λKY )dt+ σdZ + (YS − 1)dq.

If f(S, t) is the price for any derivative, according to the Itô’s Lemma,

df = {∂f∂t + ∂f
∂S (µ− λKY )S + 1

2
∂2f
∂S2σ

2S2 + λE[f(SYS , t)− f(S, t)]}dt

+ ∂f
∂SσSdZ + (Yf − 1)fdq.

(Recall that the total jump effect on f (from (YS−1)dq) equals the sum of λE[f(SYS , t)−
f(S, t)]dt and (Yf − 1)fdq, where the mean of (Yf − 1)fdq is zero.)
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Construct a portfolio π = −f + ∂f
∂SS:

⇒ dπ = −df + ∂f
∂SdS = {−∂f∂t −

1
2
∂2f
∂S2σ

2S2 − λE[f(SYS , t)− f(S, t)]}dt

−(Yf − 1)fdq + ∂f
∂S (YS − 1)Sdq

(Note that both −(Yf−1)fdq and ∂f
∂S (YS−1)Sdq depend on the identical Poisson process,

but these two terms cannot offset each other perfectly.)

⇒ π is NOT an instantaneous riskless portfolio

⇒ We cannot infer the instantaneous expected rates of return of any derivatives (e.g.

f and S) to be r.

� Case 1: Suppose the instantaneous expected rate of return of f is g(S, t).

⇒ ∂f
∂t + ∂f

∂S (µ− λKY )S + 1
2
∂2f
∂S2σ

2S2 + λE[f(SYS , t)− f(S, t)]} = g(S, t)f .

(The PDE for derivatives under the jump-diffusion process if the no-arbitrage argument

cannot be used.)

� Case 2: Suppose the jump is a type of firm-specific risk, and the firm-specific risk is

not priced according to the CAPM, so the instantaneous expected rate of return of π

(with a drift term and the firm-specific risk) should be r.

⇒ Expected change in π during the following dt period

= {−∂f∂t −
1
2
∂2f
∂S2σ

2S2 − λE[f(SYS , t)− f(S, t)] + ∂f
∂SλKY S}dt

(Note that the mean of (Yf − 1)dq is zero, and the mean of (YS − 1)dq is λKY dt.)

= r(−f + ∂f
∂SS)dt

⇒ ∂f
∂t + 1

2
∂2f
∂S2σ

2S2 + λE[f(SYS , t)− f(S, t)] + ∂f
∂S (r − λKY )S = rf .

(The PDE for derivatives under the jump-diffusion process is identical to Eq. (14)

in Merton (1976).)

II. Market Price of Risk and Degree of Risk Aversion

• The market price of risk

dθ
θ = mdt+ sdZ (θ is not necessary to be tradable. It can be a state variable.)

Find two derivatives, f1 = f1(θ, t) and f2 = f2(θ, t), apply the Itô’s Lemma, and rewrite
df1 and df2 in the form similar to the geometric Brownian motions:

df1 = µ1f1dt+ σ1f1dZ,
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df2 = µ2f2dt+ σ2f2dZ,

where µi and σi are interpreted as the expected value and the volatility of the return of

fi. That is, µi = (∂fi∂t +mθ ∂fi∂θ + 1
2s

2θ2 ∂
2fi
∂θ2 )/fi and σi = ∂fi

∂θ sθ/fi.

Construct a portfolio π = (σ2f2)f1 − (σ1f1)f2 ⇒ dπ = (σ2f2)df1 − (σ1f1)df2.

Substitute df1 and df2 into the above equation:

⇒ dπ = [(σ2f2)(µ1f1)− (σ1f1)(µ2f2)]dt = rπdt = (rσ2f2f1 − rσ1f1f2)dt
⇒ µ1σ2 − µ2σ1 = σ2r − σ1r
⇒ µ1−r

σ1
= µ2−r

σ2
= λ (the market price of risk of θ).

Rewrite the above equation to obtain µi − r = σiλ ⇒ dfi = (r + λσi)fidt+ σifidZ.

(For bearing σi percent of risk, which is caused by the dZ of θ, the holder of fi can earn
more excess return by λσi%.)

The PDE for fi is
[
(∂fi∂t +mθ ∂fi∂θ + 1

2s
2θ2 ∂

2fi
∂θ2 )/fi − r

]
/(∂fi∂θ sθ/fi) = λ.

(If θ is tradable, itself can be regarded as a derivative asset, i.e., f(θ) = θ, and then we
can further obtain m−r

s = λ. In addition, the Black-Scholes PDF for fi can be derived

based on m−r
s = µi−r

σi
= λ. Since we can replace λ with m−r

s , there is no role of λ in the
Black-Scholes PDF.)

• λ = 0 ⇒ µi = r ⇒ risk neutral world.

λ > 0 ⇒ µi > r ⇒ risk averse world.

λ < 0 ⇒ µi < r ⇒ risk loving world.

∗ different values of λ ⇒ different expected return ⇒ different worlds

⇒ different probability measures

(Later I will show that under different probability measures, the mean of a random variable
or the drift of a stochastic process should change.)

• Multiple state variables

dθi
θi

= midt+ sidZi, and dZidZj = ρijdt

⇒ df
f = µdt+

n∑
i=1

σidZi (which is the result by the multi-variable Itô’s Lemma)

⇒ µ− r =
n∑
i=1

λiσi.

(Note that the expected growth rate µ is a function of ρij , which means ρij influences the
excess return and thus the market price of risk λi.)

(Refer to Chapter 27 or Technical Note 30 in Hull (2011) for details.)
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III. RNVR and Black-Scholes Formula

• Risk Neutral Valuation Relationship (RNVR):

First, we consider to replace µ with r for the process S on p. 2-1, i.e., dS
S = rdt + σdZ.

(The intuition for this replacement is that there is only r (but no µ) in the final PDE.)
Note also that it is equivalent to considering the underlying stock price in the risk neutral
world.

Second, for the stochastic process df , its drift term (∂f∂t + ∂f
∂SµS + 1

2
∂2f
∂S2σ

2S2)dt then

becomes (∂f∂t + ∂f
∂S rS + 1

2
∂2f
∂S2σ

2S2)dt = rfdt, where the last equality is due to the partial

differential equation for the derivative f . Therefore, we obtain df = rfdt + ∂f
∂SσdZ or

df
f = rdt + ∂f

∂S
σ
f dZ, i.e., the expected growth rate of the derivative f is also r, so we can

treat f to be in the risk neutral world as well.

As a result, to solve option prices based on the partial differential equation on p. 2-2 is
equivalent to considering both S and f to be in the risk neutral world, i.e., the expected
growth rates of both the underlying asset and its derivatives are equal to r, and thus the
payoff of any derivative f should be discounted at the risk free rate r.

• Feynman-Kac formula: to price any derivative, one needs to calculate only the expectation
of the present value of the payoff (with the risk free rate as the discount rate).

Given dX(t)=µ(X(t), t)dt+ σ(X(t), t)dZ(t) and X(0) = x, then f(X, 0) =

E[e−
∫ T
0
r(X(τ),τ)dτg(X(T ))] is the unique solution of the following PDE.

∂f
∂t + ∂f

∂Xµ(X, t) + 1
2σ

2(X, t) ∂
2f

∂X2 = r(X, t)f(X, t),

where g(X(T )) is the boundary condition (or said the payoff function) at T of f(X, t),
i.e., f(X,T ) = g(X(T )).

∗ If r is constant, f(X, 0) = e−rTE[g(X(T ))].
∗ This formula was formally proposed after the introduction of the Black-Scholes formula.

• Apply the Feynman-Kac formula and RNVR to deriving the Black-Scholes formula:

Based on the RNVR and the Feynman-Kac formula, the unique solution of the target
PDE can be obtained by calculating the expectation of the present value of the derivative
payoff at the maturity in the risk neutral world. Considering a constant risk free rate and
taking a call option for example, the option price today is

c(S0, 0) = e−rTE[payoff at T |in the risk neutral world]

= e−rTE[max(ST −K, 0)|in the risk neutral world]

= e−rT
∫∞
0

max(ST −K, 0)f(ST |in the risk neutral world)dST ,

where f(ST |in the risk neutral world) is the probability density function of ST in the risk
neutral world.

2-5



• One can express the integral with the lognormally distributed probability density function.

c(S0, 0) = e−rT
∫∞
K

(ST −K)f(ST |in the risk neutral world)dST∥∥∥∥∥ lognormal probability density function under the risk neutral measure:

f(ST |in the risk neutral world) ≡ f(ST ) = 1
ST

1
σ
√
T
√
2π

exp [
−(lnST−EQ[lnST ])2

2σ2T ]

= e−rT
∫∞
K
ST f(ST )dST −Ke−rT

∫∞
K
f(ST )dST .

After performing the technique of changing variables between lognormally and normally
distributed variables and using the probability density function of the standard normal
distribution (see the appendix in Chapter 14 in Hull (2011)), we can derive the famous
Black-Scholes formula.

c(S0, 0) = S0N(d1)−Ke−rTN(d2),

where d1 =
ln(

S0
K
)+(r+σ2

2
)T

σ
√
T

, d2 = d1 − σ
√
T =

ln(
S0
K
)+(r−σ

2

2
)T

σ
√
T

, and N(·) denotes the

cumulative distribution function of the standard normal distribution.

• To implement the computer program for the Black-Scholes formula, two methods to
calculate the cumulative distribution function N(x) are introduced:

1. Call the NORMSDIST function in Excel.

In Excel, you can insert NORMSDIST into a cell on a worksheet to calculate N(x).
However, in the VBA environment of Excel, you need the following statement to call this
Excel-providing function, “Application.WorksheetFunction.NormSDist(x)”.

2. A polynomial approximation:

N(x) =

{
1−N ′(x)(a1k + a2k

2 + a3k
3 + a4k

4 + a5k
5) when x ≥ 0

1−N(−x) when x < 0

where

k =
1

1 + γx
, γ = 0.2316419, a1 = 0.319381530, a2 = −0.356563782,

a3 = 1.781477937, a4 = −1.821255978, a5 = 1.330274429, N ′(x) =
1√
2π
e−x

2/2.

(Useful features of polynomial functions: integrable and differentiable, and the corre-
sponding calculus calculations are simple.)
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IV. Martingale Pricing Method

• This method can derive Black-Scholes-like formulas for many different types of deriva-
tives without evaluating the complicated and tedious integration to derive N(·) terms.
However, how to change the probability measure for stochastic processes is not easy to
understand.

• dS
S = (µ− q)dt+ σdZP , where dZP is the Wiener process under the probability measure
P and q denotes the dividend yield.

∗ The probability measure P is also called the physical measure, which is the probability
measure in our real world, i.e., in a risk averse world.∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

� Transform to the Wiener process under the risk neutral measure Q

dZP = dZQ − λdt = dZQ − (µ−rσ )dt, where dZQ is the Wiener process under Q.

Multiplying both sides of the equation with σ ⇒ σdZP = σdZQ − (µ− r)dt.
After rearranging⇒ dS

S = (µ− q)dt+ σdZQ − (µ− r)dt = (r − q)dt+ σdZQ.

(Since it is known that for all security prices in the risk neutral world are with returns
to be the risk free rate, we can infer that the measure Q is the risk neutral measure.)

(When σ is constant, changing probability measure affects only the drift term.)

∗ Corresponding to the measure P , there is a measure Q, under which the drift term of
the stock price process is the risk free rate. We call this measure Q to be the risk neutral
measure.

Table 2-1 dZP and dZQ in different probability measures

probability measure � � 

� > 0 = 0 

��

�
= 	
 − ��� + ���� 	� − ��� + ���� 

Wiener process in the 

specified measure 
��� ��� 

��[⋅] ��[���] = 0 ��[���] = ��� 

��[⋅] ��[���] = −��� ��[���] = 0 

var�[⋅] var�[���] = �� var�[���] = �� 

var�[⋅] var�[���] = �� var�[���] = �� 
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Figure 2-1

��(�) under � ��(�) under � 

�� 

� � 0 0

• Under the risk neutral measure Q, the stock price process becomes as follows.
dS
S

= (µ− q)dt+ σdZP (replacing dZP with dZQ − (µ−r
σ

)dt)

⇒ dS
S

= (r − q)dt+ σdZQ

⇒ d lnS = (r − q − σ2

2
)dt+ σdZQ ⇒ lnST = lnS0 + (r − q − σ2

2
)T + σ∆ZQ(T ),

where ∆ZQ(T ) ∼ NDQ(0, T )

• Definition of measure

Ω: universal set (the set of all possible events)

F : a set of “events” (For stochastic processes, F changes over time and is called the
filtration, which will be introduced in Appendix A.)

A measure is a nonegative and countable additive real-number function, which assigns
each subset a real number, intuitively interpreted as the size of the subset.

That is, a function µ: F → R with the following two properties is a measure:

(i) (Non-negativity) µ(A) ≥ µ(φ) = 0 for all A ∈ F
(ii) (Countable additivity) If Ai ∈ F are countable disjoint sets (i.e., Ai

⋂
Aj = φ if

i 6= j), µ(
⋃
iAi) =

∑
i

µ(Ai)

• Examples of measures:

1. A typical example of the measure is the function to count the number of items in each
set Ai.

2. Lebesque measure m on the real line R is defined as m((a, b)) = b− a (or m([a, b]) =
b− a), where (a, b) (or [a, b]) is an open (or closed) interval on the real number axis.
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• If P (Ω) = 1, we call P a probability measure. The probability measure of a random
variable is its cumulative distribution function. For example, if x follows the standard
normal distribution, we have P (x ∈ [−∞, c]) =

∫ c
−∞

1√
2π
e−

1
2
x2dx or P (x ∈ [x, x + dx]) =

1√
2π
e−

1
2
x2dx. Note that since dP (x) ≡ P (x ∈ [x, x + dx]), we further obtain dP (x) =

1√
2π
e−

1
2
x2dx ≡ fP (x)dx.

• The effect of changing probability measures is to change the mean of a random variable
(see Appendix B) or the drift of a stochastic process. Note that this chapter actually
focuses on the probability measure for a stochastic process, which represents a series of
random variables.

• The RNVR holds in both our risk averse and the risk neutral worlds ⇒ Measures Q and
P are equivalent measures

1. Risk neutral valuation relationship (RNVR): we construct a risk free portfolio and this
portfolio should earn the risk free rate based on the no-arbitrage argument. Therefore,
the risk free rate is introduced in option pricing, and we can price options as if they were
in the risk neutral world. It is worth noting that even under RNVR, we actually derive
the option prices in the risk averse world.

2. Definition of equivalent measures: Two measures are equivalent as long as they return
zero probability for zero probability events. Of course, for sure events, two equivalent
measures both return 100% probability.

3. It is known that the arbitrage profit is a sure event, and a no-arbitrage portfolio in our
risk averse world (corresponding to the measure P ) is also a no-arbitrage portfolio in the
risk neutral world (corresponding to the measure Q), so we can infer that the risk neutral
measures Q and the physical measure P are equivalent.

∗ One can change probability measures only between equivalent measures.

• The existence of the risk neutral measure Q is equivalent to excluding any arbitrage
opportunity (Harrison and Pliska (1981) or Harrison and Kreps (1979)).

(⇐) The no arbitrage argument implies that there is a measure Q under which the stock
return changes from µ to r.

(⇒) If the Q measure exists such that the drift term changes from µ to r under the
measure Q, it is implied that the no-arbitrage argument holds.

• After employing the no arbitrage argument to obtain the RNVR, we can price options
as if they were in the virtual risk-neutral world, in which all security returns are the risk
free rate. Since the drift term µ is changed to be r under the measure Q, it implies that
considering the risk neutral world is equivalent to considering the measure Q. As a result,
the option price today is the present value of its expected payoff under the measure Q, i.e.,
c(S0, 0) = e−rTEQ[c(ST , T )]. (EQ[·] denotes the expectation in the risk neutral world.)
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• Martingale (平賭): A process Y = Y (t) is a martingale under any probability measure P
if EP [Y (s)|Ft] = Y (t), where EP [·|Ft] is the expectation under P conditional on Ft.

For example, in the risk neutral world, since the expected stock return is r, i.e., EQ[St|F0] =
S0e

rt, we can infer that e−rtSt is a martingale process under the measure Q. In fact, in
the risk neutral world, since the expected return of all securities is the risk free rate r,
for the price of any security ft (including all derivatives), e−rtft is a martingale process
under the measure Q.

• Girsanov theorem (to change measure for stochastic processes)

Given ZQ and ZR to be standard Wiener processes under the measure Q and R. If
E[e

1
2

∫ t
0 H

2(τ)dτ ] <∞, and define the Radon-Nikodym derivative as

Λ = dR
dQ

= e−
∫ T
0 H(τ)dZQ(τ)− 1

2

∫ T
0 H2(τ)dτ ,

then dZR = dZQ +H(t)dt or ZR(t) = ZQ(t) +
∫ t

0
H(τ)dτ . In addition, Q and R are

equivalent measures.

∗ An important application of the Girsanov Theorem: EQ[Λ ·X] = ER[X].

Pf: EQ[Λ ·X] =
∫

ΛXdQ(X) =
∫
X dR

dQ
dQ(X) =

∫
XdR(X) = ER[X]

∗ Furthermore, if X = 1A =


1 if the event A occurs

0 o/w

⇒ EQ[Λ · 1A] = ER[1A].

• c(S0, 0) = e−rTEQ[max(ST −K, 0)] = e−rTEQ[(ST −K) · 1A],

where A = {ST | ST ≥ K}, and 1A =


1 if ST ≥ K

0 o/w

⇒ c(S0, 0) = e−rT EQ[ST · 1A]︸ ︷︷ ︸−Ke−rT EQ[1A]︸ ︷︷ ︸
(1) (2)

(2) = EQ[1A] = PrQ(ST ≥ K) = PrQ(lnST ≥ lnK)

= PrQ(lnS0 + (r − q − σ2

2
)T + σ∆ZQ(T ) ≥ lnK)

= PrQ(−∆ZQ(T )√
T
≤ ln(

S0
K

)+(r−q−σ
2

2
)T

σ
√
T

)

↓ ↓
NDQ(0, 1) d2

=N(d2)
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(1) = EQ[ST · 1A] = EQ[S0e
(r−q−σ

2

2
)T+σ∆ZQ(T ) · 1A]

= S0e
(r−q)T · EQ[e−

σ2

2
T+σ∆ZQ(T ) · 1A︸ ︷︷ ︸] (= S0e

(r−q)T ∫ Λ1AdQ(ST ))

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Apply the Girsanov theorem
Setting H(t) = −σ
⇒ Λ = dR

dQ
= e−

1
2

∫ T
0 σ2dτ−

∫ T
0 −σdZ

Q(τ) = e−
σ2

2
T+σ∆ZQ(T )

⇒ dZR = dZQ − σdt (or dZQ = dZR + σdt)
(Note that when changing measure P to measure Q, H(t) = λ = µ−r

σ
.)

Replace dZQ in the stock price process in the risk neutral world, we can obtain
dS
S

= (r − q)dt+ σ(dZR + σdt) = (r − q + σ2)dt+ σdZR

⇒ dS
S

= (r − q + σ2)dt+ σdZR

⇒ d lnS = (r − q + σ2

2
)dt+ σdZR ⇒ lnST = lnS0 + (r − q + σ2

2
)T + σ∆ZR(T ),

where ∆ZR(T ) ∼ NDR(0, T ).

= S0e
(r−q)T · ER[1A] (= S0e

(r−q)T ∫ 1AdR(ST ))

= S0e
(r−q)T · PrR(ST ≥ K)

= S0e
(r−q)T · PrR(lnST ≥ lnK)

‖
lnS0 + (r − q + σ2

2
)T + σ∆ZR(T )

= S0e
(r−q)T · PrR(−∆ZR(T )√

T
≤ ln(

S0
K

)+(r−q+σ2

2
)T

σ
√
T

)

↓ ↓
NDR(0, 1) d1

= S0e
(r−q)TN(d1)

c(S0, 0) = e−rT · (1)−Ke−rT · (2)

= e−rTS0e
(r−q)TN(d1)−Ke−rTN(d2)

= S0e
−qTN(d1)−Ke−rTN(d2)

∥∥∥∥∥∥∥∥∥
PrR(lnS0 + (r − q − σ2

2
)T + σ∆ZQ(T ) ≥ lnK) (suppose ∆ZQ(T ) ∼ NDR(σT, T ))

= PrR(lnS0 + (r − q − σ2

2
)T + σ(σT +

√
TεR) ≥ lnK) (εR ∼ NDR(0, 1))

= PrR(lnS0 + (r − q + σ2

2
)T + σ

√
TεR ≥ lnK) = PrR(−εR ≤ ln(

S0
K

)+(r−q+σ2

2
)T

σ
√
T

) = N(d1)

(The above derivation is exactly the same as the result using the Girsanov theorem.)
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∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

∗ Prove that ∆ZQ(T ) ∼ NDR(σT, T ):∥∥∥∥∥∥
� Stein’s Lemma: Given x ∼ ND(µ, σ2), E[g(x)(x− µ)] = σ2E[g′(x)], if g is a

differentiable function.

� If ln(y) ∼ ND(µ, σ2), E[y] = eµ+σ2

2

Define X = ∆ZQ(T ), and thus X ∼ NDQ(0, T )

ER[X] = EQ[XΛ] = EQ[Xe−
σ2T
2

+σX ] (see the top on p. 2-11)

= e−
σ2T
2 EQ[XeσX ] = e−

σ2T
2 (TEQ[(eσX)′]) (according to the Stein’s Lemma)

= e−
σ2T
2 (TEQ[σ(eσX)] = e−

σ2T
2 σTEQ[eσX ]

= e−
σ2T
2 σTe

σ2T
2 (since ln(eσX) ∼ NDQ(0, σ2T ))

= σT

varR(X) = ER[X2]− (ER[X])2 = ER[X2]− (σT )2 = T,
because

ER[X2] = EQ[X2Λ] = EQ[X2e−
σ2T
2

+σX ] = e−
σ2T
2 EQ[X2eσX ]

= e−
σ2T
2 (TEQ[(XeσX)′]) (according to the Stein’s Lemma)

= e−
σ2T
2 (TEQ[eσX + σXeσX ]) = e−

σ2T
2 T (EQ[eσX ] + σEQ[XeσX ]) = e−

σ2T
2 T (e

σ2T
2 + σ2Te

σ2T
2 )

= T + σ2T 2

• EQ[S2
T · 1A] = EQ[S2

0e
2(r−q−σ

2

2
)T+2σ∆ZQ(T ) · 1A]

= S2
0e

2(r−q)T+σ2T · EQ[e−2σ2T+2σ∆ZQ(T ) · 1A]∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Apply the Girsanov theorem
Setting H(t) = −2σ

⇒ Λ∗ = dR∗

dQ
= e−

1
2

∫ T
0 4σ2dτ−

∫ T
0 −2σdZQ(τ) = e−2σ2T+2σ∆ZQ(T )

⇒ dZR∗ = dZQ − 2σdt (or dZQ = dZR∗ + 2σdt)

Replace dZQ in the stock price process in the risk neutral world, we can obtain

d lnS = (r − q − σ2

2
)dt+ σdZQ

⇒ d lnS = (r − q − σ2

2
)dt+ σ(dZR∗ + 2σdt)

⇒ d lnS = (r − q − σ2

2
)dt+ σdZR∗ + 2σ2dt = (r − q + 3σ2

2
)dt+ σdZR∗

⇒ lnST = lnS0 + (r − q + 3σ2

2
)T + σ∆ZR∗(T ), where ∆ZR∗(T ) ∼ NDR∗(0, T )

= S2
0e

2(r−q)T+σ2T · ER∗ [1A]

= S2
0e

2(r−q)T+σ2T · PrR∗(ST ≥ K)

= S2
0e

2(r−q)T+σ2T · PrR∗(lnST ≥ lnK)

= S2
0e

2(r−q)T+σ2T · PrR∗(−∆ZR
∗

(T )√
T
≤ ln(

S0
K

)+(r−q+ 3σ2

2
)T

σ
√
T

)

= S2
0e

2(r−q)T+σ2TN(d∗1)
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Appendix A. Illustration of Filtration and Probability Measure

• Here a two-period, discrete-value process is employed to illustrate the filtration (or the
infomation structure) Ft and the probability measure.

Figure 2-2
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Appendix B. Changing Measure for Random Variables

• Given X ∼ NDQ(0, 1) under a measure Q, examine the effect of changing measure for
this random variable X.

Suppose Y = X + µ, and it is obvious that Y ∼ NDQ(µ, 1) under Q. Find an equivalent
probability measure R such that Y (= X + µ) ∼ NDR(0,1) under R.

Define Λ = dR
dQ

= dR(X)
dQ(X)

= e−µX−
µ2

2 . (Λ plays the role of Radon-Nikodym derivative in

the Girsanov theorem.)

Figure 2-3

0              

Y Y

R Q

• Suppose fQ(X) is the probability density function of X under Q.

EQ[X] =
∫∞
−∞Xf

Q(X)dX∥∥∥∥∥∥
where fQ(X) = 1√

2π
e−

1
2
X2

because X is normally distirbuted.

Since Q(X) ≡
∫
fQ(X)dX, we have

dQ(X) = fQ(X)dX and EQ[X] =
∫
XfQ(X)dX =

∫
XdQ(X).

=
∫∞
−∞XdQ(X)

= 0 (because the mean of X is zero)

• EQ[Y ] =
∫∞
−∞ Y f

Q(X)dX

=
∫∞
−∞(X + µ)fQ(X)dX

=
∫∞
−∞Xf

Q(X)dX +
∫∞
−∞ µf

Q(X)dX

= 0 + µ

= µ
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• Consider fR(X) = fQ(X) dR
dQ

= fQ(X)Λ = fQ(X)e−µX−
µ2

2 . Since
∫∞
−∞ f

R(X)dX = 1, by

the definition of the probability measure that R(Ω) = 1 on p. 2-9, we can conclude that
fR(X) is still a probability density function.

• ER[Y ] =
∫∞
−∞ Y f

R(X)dX =
∫∞
−∞(X + µ)fR(X)dX

=
∫∞
−∞(X + µ)fQ(X)e−µX−

µ2

2 dX∥∥∥∥∥∥∥∥∥
=
∫∞
−∞(X + µ)e−µX−

µ2

2 fQ(X)dX

=
∫∞
−∞(X + µ)ΛdQ(X) (= EQ[(X + µ) · Λ])

=
∫∞
−∞(X + µ) dR

dQ
dQ(X)

=
∫∞
−∞(X + µ)dR(X) (= ER[X + µ])

=
∫∞
−∞(X + µ) · 1√

2π
· e− 1

2
(X2+2µX+µ2)dX

=
∫∞
−∞(X + µ) · 1√

2π
· e− 1

2
(X+µ)2dX

(define Y = X + µ , and thus dY = dX)

=
∫∞
−∞ Y ·

1√
2π
· e− 1

2
Y 2
dY = 0

• Changing measure for a random variable is a special case of changing measure for a
stochastic process:

� Suppose the H(t) in the Girsanov Theorem to be µ.

⇒ Λ = dR
dQ

= e−
1
2

∫ T
0 µ2dτ−

∫ T
0 µdZQ(τ) = e−

1
2
µ2T−µ∆ZQ(T ) = e−µ∆ZQ(T )− 1

2
µ2T ,

which is similar to Λ = e−µX−
µ2

2 in the above example based on the assumption of
T = 1 and thus ∆ZQ(T ) ∼ NDQ(0, 1) under the measure Q can act a similar role as
X.

⇒ dZR = dZQ + µdt (or dZQ = dZR − µdt).

� Consider ∆Y=µ∆t+∆ZQ(∆t) (∆Y ∼ NDQ(µ, 1) under the measure Q given the assumption
∆t = 1). If we replace ∆ZQ(∆t) with ∆ZR(∆t)− µ∆t, we can derive ∆Y=∆ZR(∆t)

such that ∆Y ∼ NDR(0, 1) under the measure R given the assumption ∆t = 1.
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Appendix C. Option Values Under the Jump-Diffusion Model

• The content in this appendix belongs to the advanced content.

• Under the risk neutral measure Q, given

d lnS = (r − q − σ2

2
− λKY )dt+ σdZQ + lnY QdqQ,

where dqQ is a Poisson counting process with the jump intensity λ, lnY Q ∼ NDQ(µJ , σ
2
J), KY =

EQ[Y Q − 1] = eµJ+ 1
2
σ2
J − 1, and dZQ, dqQ, and Y Q are mutually independent, how to

evaluate

C(S0, 0) = e−rTEQ[(ST −K) · 1A] = e−rTEQ[ST · 1A]−Ke−rTEQ[1A],

where 1A =


1 if ST ≥ K

0 o/w
?

� EQ[1A] = PrQ(ST ≥ K) = PrQ(lnST ≥ lnK)

= PrQ(lnS0 + (r − q − σ2

2
− λKY )T + σ∆ZQ(T ) +

NQ
T∑

i=1

lnY Q ≥ lnK)∥∥∥ NQ
T is a Poisson variable with the jump intensity λT under Q

= e−λT (λT )0

0!
PrQ(lnS0 + (r − q − σ2

2
− λKY )T + σ∆ZQ(T ) ≥ lnK) +

e−λT (λT )1

1!
PrQ(lnS0 + (r − q − σ2

2
− λKY )T + σ∆ZQ(T ) + lnY Q ≥ lnK) +

...

...
e−λT (λT )n

n!
PrQ(lnS0 + (r − q − σ2

2
− λKY )T + σ∆ZQ(T ) +

n∑
i=1

lnY Q ≥ lnK) +︸ ︷︷ ︸
(II)

...

...
e−λT (λT )∞

∞!
PrQ(lnS0 + (r − q − σ2

2
− λKY )T + σ∆ZQ(T ) +

∞∑
i=1

lnY Q ≥ lnK).

∗ For (II):

PrQ(−σ∆ZQ(T )−
n∑
i=1

lnY Q ≤ ln(S0

K
) + (r − q − σ2

2
− λKY )T )
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∥∥∥∥∥∥∥∥∥∥
∵ −σ∆ZQ(T ) ∼ NDQ(0, σ2T ),

−
n∑
i=1

lnY Q ∼ NDQ(−nµJ , nσ2
J),

∴ −σ∆ZQ(T )−
n∑
i=1

lnY Q ∼ NDQ(−nµJ , σ2T + nσ2
J).

= PrQ(
−σ∆ZQ(T )−

n∑
i=1

lnY Q+nµJ
√
σ2T+nσ2

J

≤ ln(
S0
K

)+(r−q−σ
2

2
−λKY )T+nµJ√

σ2T+nσ2
J

)

= N(
ln(

S0
K

)+(r+nµJ/T−λKY −q−σ
2

2
)T√

σ2+nσ2
J/T
√
T

)

= N(
ln(

S0
K

)+(rn−q−
υ2n
2

)T√
υ2n
√
T

) = N(d2n),

where rn ≡ r + n(µJ + 1
2
σ2
J)/T − λKY , and υ2

n ≡ σ2 + nσ2
J/T .

� EQ[ST · 1A] = EQ[S0e
(r−q−σ

2

2
−λKY )T+σ∆ZQ(T )+

N
Q
T∑

i=1
lnY Q

· 1A]

= S0e
(r−q)TEQ[e

−(σ
2

2
+λKY )T+σ∆ZQ(T )+

N
Q
T∑

i=1
lnY Q

· 1A]∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

The Girsanov theorem for the jump-diffusion process:

Consider the Radon-Nikodym derivative,

Λ = dR
dQ

= e
−

∫ T
0 (σ

2

2
+λKY )dτ−

∫ T
0 −σdZ

Q(τ)+

N
Q
T∑

i=1
lnY Q

,

we can obtain

dZR = dZQ − σdt,
and under the measure R,

NQ
T can be viewed as a Poisson variable NR

T with a different jump

intensity λ′T = λ(KY + 1)T and the corresponding jump size

lnY R ∼ NDR(µJ + σ2
J , σ

2
J).

By defining dqR to be a Possion process with the jump intensity λ′ and

the corresponding jump size to be lnY R ∼ NDR (µJ + σ2
J , σ

2
J) under

the measure R, the stochastic differentiation equation for S is rewritten as

d lnS =
(
r − q − σ2

2
− λKY

)
dt+ σ

(
dZR + σdt

)
+ lnY RdqR.
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= S0e
(r−q)TER[1A]

= S0e
(r−q)TPrR(ST ≥ K)

= S0e
(r−q)TPrR(lnST ≥ lnK)

= S0e
(r−q)TPrR(lnS0 + (r − q + σ2

2
− λKY )T + σ∆ZR(T ) +

NR
T∑

i=1

lnY R ≥ lnK)∥∥∥∥∥Note that NR
T is a Poisson variable with the jump intensity λ′T and

lnY R ∼ NDR(µJ + σ2
J , σ

2
J) under R.

= S0e
(r−q)T e−λ

′T (λ′T )0

0!
PrR(lnS0 + (r − q + σ2

2
− λKY )T + σ∆ZR(T ) ≥ lnK) +

S0e
(r−q)T e−λ

′T (λ′T )1

1!
PrR(lnS0 + (r − q + σ2

2
− λKY )T + σ∆ZR(T ) + lnY R ≥ lnK) +

...

...

S0e
(r−q)T e−λ

′T (λ′T )n

n!
PrR(lnS0 + (r − q + σ2

2
− λKY )T + σ∆ZR(T ) +

n∑
i=1

lnY R ≥ lnK)︸ ︷︷ ︸
(I)

+

...

...

S0e
(r−q)T e−λ

′T (λ′T )∞

∞!
PrR(lnS0 + (r − q + σ2

2
− λKY )T + σ∆ZR(T ) +

∞∑
i=1

lnY R ≥ lnK).

∗ For (I):

PrR(−σ∆ZR(T )−
n∑
i=1

lnY R ≤ ln(S0

K
) + (r − q + σ2

2
− λKY )T )∥∥∥∥∥∥∥∥∥∥

∵ −σ∆ZR(T ) ∼ NDR(0, σ2T ),

−
n∑
i=1

lnY R ∼ NDR(−n(µJ + σ2
J), nσ2

J),

∴ −σ∆ZR(T )−
n∑
i=1

lnY R ∼ NDR(−n(µJ + σ2
J), σ2T + nσ2

J).

= PrR(
−σ∆ZR(T )−

n∑
i=1

lnY R+n(µJ+σ2
J )

√
σ2T+nσ2

J

≤ ln(
S0
K

)+(r−q+σ2

2
−λKY )T+n(µJ+σ2

J )√
σ2T+nσ2

J

)

= N(
ln(

S0
K

)+(r+nµJ/T−λKY −q+σ2

2
+nσ2

J/T )T√
σ2+nσ2

J/T
√
T

)

= N(
ln(

S0
K

)+(rn−q+
υ2n
2

)T√
υ2n
√
T

) = N(d1n).

(Note that d1n = d2n + υn
√
T .)
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• Combining everything leads to

C(S0) = S0e
−qT

∞∑
n=0

e−λ
′T (λ′T )n

n!
N(d1n)−Ke−rT

∞∑
n=0

e−λT (λT )n

n!
N(d2n),

where λ′ = λ(KY + 1) = λeµJ+ 1
2
σ2
J ,

d1n =
ln(

S0
K

)+(rn−q+
υ2n
2

)T

υn
√
T

,

d2n =
ln(

S0
K

)+(rn−q−
υ2n
2

)T

υn
√
T

= d1n − υn
√
T ,

rn = r + n(µJ + 1
2
σ2
J)/T − λKY ,

υ2
n = σ2 + nσ2

J/T.

(The above formula is identical to Eq. (19) in Merton (1976) due to the fact that

e−rT e
−λT (λT )n

n!
= e−rnT e

−λ′T (λ′T )n

n!
.)
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Appendix D. Option Values Under the SVJ Model

• The content in this appendix belongs to the advanced content.

• Stochastic volatility and jump (SVJ) process (Bakshi, Cao, and Chen (1997)) under the
measure Q:

dS
S

= (r − λKY )dt+
√
V dZS + (YS − 1)dq,

dV = κ(θ − V )dt+ σV
√
V dZV ,

where lnYS ∼ NDQ(µJ , σ
2
J), dq, dZS, dZV and YS are mutually independent except that

corr(dZS, dZV ) = ρ.

• For a European call written on S with a strike price K and a time to maturity τ , c(S, V, t),
it must satisfy the following PDE:

(r − λKY )S ∂c
∂S

+ κ(θ − V ) ∂c
∂V
− ∂c

∂τ
+ 1

2
V S2 ∂2c

∂S2 + 1
2
σ2
V V

∂2c
∂V 2

+ρσV V S
∂2c
∂S∂V

+ λE[c(SYS, V, t)− c(S, V, t)] = rc,

subject to the boundary condition c(St+τ , Vt+τ , t+ τ) = max(St+τ −K, 0).

• The value of the call option today can be expressed as

c(St, Vt, t) = StΠ1(St, Vt, t)−Ke−rTΠ2(St, Vt, t),

where Π1 and Π2 are risk-neutral probabilities and can be recovered from inverting the
respective characteristic functions.

(Note that Π1 and Π2 play similar roles as the cumulative distribution probabilities N(d1)
and N(d2) in the Black-Scholes formula.)

• A characteristic function of any real-valued random variable completely defines its prob-
ability distribution. If a random variable admits a probability density function, then the
characteristic function is the inverse Fourier transform of the probability densiy function.

• Two equivalent approaches to determine behavior and properties of the probability dis-
tribution of a random variable X:

Cumulative distribution function: FX(x) ≡ E[1{X≤x}].

Characteristic function: fX(φ) ≡ E[eiφX ] =
∫
X
eiφxdFX(x).

(A special feature for the characteristic function is that fX(0) =
∫
X
dFX(x) = 1 by

definition.)
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• If X follows


ND(µ, σ2) , fX(φ) = eiφµ−

1
2
φ2σ2

Poisson(λ) , fX(φ) = eλ(eiφ−1) .

Exponential(λ), fX(φ) = (1− iφλ−1)−1

• Due to the one-to-one correspondence between FX(x) and fX(φ), it is always possible to
find one of these functions if we know the other one. The relation is expressed as follows.

F ′X(x) = 1
2π

∫∞
−∞ e

−iφxfX(φ)dφ.

∗ For example, if fX(φ) = eiφµ−
1
2
φ2σ2

, then

F ′X(x) = 1
2π

∫∞
−∞ e

−iφxeiφµ−
1
2
φ2σ2

dφ

= 1
2π

∫∞
−∞ e

iφ(x−µ)− 1
2
φ2σ2

dφ

= 1
2π

∫∞
−∞ e

−σ
2

2
(φ+

i(x−µ)
σ2

)2+kdφ∥∥∥ k = σ2

2
( i(x−µ)

σ2 )2 = −1
2
(x−µ

σ
)2

= 1√
2πσ

e−
1
2

(x−µ
σ

)2
∫∞
−∞

1√
2π
e−

y2

2 dy∥∥∥∥∥ −y2

2
= −σ2

2
(φ+ i(x−µ)

σ2 )2

⇒ dy = σdφ

= 1√
2πσ

e−
1
2

(x−µ
σ

)2 (the probability density function for X ∼ ND(µ, σ2)).

• However, under the SVJ model, the distribution of S is unknown. The following approach
is proposed to solve the characteristic function and option value under the SVJ model.

• Suppose we know the characteristic function fj(φ) corresponding to Πj, for j = 1, 2. Then
Πj can be derived as

Πj = 1
2

+ 1
π

∫∞
0
Re[

e−iφ ln(K)fj(φ)

iφ
]dφ,

where Re[ · ] denotes the real part of a complex number.

∗ For most cases, the above integral does not have an analytical solution. For instance,

even for the normal distribution, although we can obtain the probability density func-

tion as shown above, we cannot obtain the analytical formula for its cumulative distribu-

tion function. So, it is usual to employ the technique of numerical integration to solve

Πj.

∗ Therefore, the only remaining task is to solve fj(φ).
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• Define X = ln(S) and rewrite the PDE for c(S, V, t) to be

(r − 1
2
V − λKY ) ∂c

∂X
+ κ(θ − V ) ∂c

∂V
− ∂c

∂τ
+ 1

2
V ∂2c
∂X2 + 1

2
σ2
V V

∂2c
∂V 2 + ρσV V

∂2c
∂X∂V

+λE[c(X + lnYS, V, t)− c(X, V, t)] = rc.

� By replacing c = eXΠ1 −Ke−rTΠ2, one can obtain

∗ ∂c
∂X

= eX ∂Π1

∂X
+ eXΠ1 −Ke−rT ∂Π2

∂X
,

∗ ∂2c
∂X2 = eXΠ1 + 2eX ∂Π1

∂X
+ eX ∂2Π1

∂X2 −Ke−rT ∂
2Π2

∂X2 ,

∗ ∂c
∂V

= eX ∂Π1

∂V
−Ke−rT ∂Π2

∂V
,

∗ ∂2c
∂V 2 = eX ∂2Π1

∂V 2 −Ke−rT ∂
2Π2

∂V 2 ,

∗ ∂2c
∂X∂V

= eX ∂2Π1

∂X∂V
+ eX ∂Π1

∂V
−Ke−rT ∂2Π2

∂X∂V
,

∗ ∂c
∂τ

= eX ∂Π1

∂τ
−Ke−rT ∂Π2

∂τ
+ rKe−rTΠ2,

∗ λE[c(X + lnYS, V, t)− c(X, V, t)]
= λE[eX+lnYSΠ1(X + lnYS, V, t)−Ke−rTΠ2(X + lnYS, V, t)

−eXΠ1(X, V, t) +Ke−rTΠ2(X, V, t)]

= eX{λE[YSΠ1(X + lnYS, V, t)− Π1(X, V, t)]}
−Ke−rT{λE[Π2(X + lnYS, V, t)− Π2(X, V, t)]},

∗ rc = r(eXΠ1 −Ke−rTΠ2).

� Insert the above equations into the PDE and separate Π1 and Π2 to derive the PDEs

for Π1 and Π2, respectively.

(r+ 1
2
V − λKY )∂Π1

∂X
+ [κ(θ− V ) + ρσV V ]∂Π1

∂V
− ∂Π1

∂τ
+1

2
V ∂2Π1

∂X2 + 1
2
σ2
V V

∂2Π1

∂V 2 + ρσV V
∂2Π1

∂X∂V

−λKY Π1 + λE[YSΠ1(X + lnYS, V, t)− Π1(X, V, t)] = 0,

and

(r− 1
2
V − λKY )∂Π2

∂X
+ κ(θ− V )∂Π2

∂V
− ∂Π2

∂τ
+ 1

2
V ∂2Π2

∂X2 +1
2
σ2
V V

∂2Π2

∂V 2 + ρσV V
∂2Π2

∂X∂V
+ λE[Π2

(X + lnYS, V, t)− Π2(X, V, t)] = 0,

with the boundary conditions Πj(Xt+τ , Vt+τ , t+ τ) = 1{Xt+τ≥lnK}, for j = 1, 2.

� PDEs for f1 and f2 (see Bakshi, Cao, and Chen (1997)):

(r + 1
2
V − λKY )∂f1

∂X
+ [κ(θ − V ) + ρσV V ]∂f1

∂V
− ∂f1

∂τ
+1

2
V ∂2f1
∂X2 + 1

2
σ2
V V

∂2f1
∂V 2 + ρσV V

∂2f1
∂X∂V

−λKY f1 + λE[YSf1(φ,X + lnYS, V, t)− f1(φ,X, V, t)] = 0,

and

(r − 1
2
V − λKY )∂f2

∂X
+ κ(θ − V )∂f2

∂V
− ∂f2

∂τ
+ 1

2
V ∂2f2
∂X2 +1

2
σ2
V V

∂2f2
∂V 2 + ρσV V

∂2f2
∂X∂V

+ λE[f2

(φ,X + lnYS, V, t)− f2(φ,X, V, t)] = 0,

with the boundary conditions fj(φ,Xt+τ , Vt+τ , t+ τ) = eiφXt+τ , for j = 1, 2.
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� Conjecture the solutions of f1 and f2 as follows.

f1(φ,Xt, Vt, t) = exp(α(τ) + αV (τ)Vt + iφXt),

f2(φ,Xt, Vt, t) = exp(β(τ) + βV (τ)Vt + iφXt),

with α(0) = αV (0) = β(0) = βV (0) = 0 such that the boundary conditions of f1 and f2

can be satisfied.

� Solve α(τ) and αV (τ) in f1(φ,Xt, Vt, t):

∂f1
∂X

= iφf1,
∂f1
∂V

= αV (τ)f1,
∂f1
∂τ

= [α′(τ) + α′V (τ)V ]f1,

∂2f1
∂X2 = −φ2f1,

∂2f1
∂V 2 = [αV (τ)]2f1,

∂2f1
∂X∂V

= iφαV (τ)f1.

Replacing the above partial derivatives into the PDE of f1 yields

(r + 1
2
V − λKY )iφf1 + [κ(θ − V ) + ρσV V ]αV (τ)f1 − [α′(τ) + α′V (τ)V ]f1 + 1

2
V (−φ2f1)

+1
2
σ2
V V [αV (τ)]2f1 + ρσV V [iφαV (τ)f1]− λKY f1 + λf1[e(iφ+1)µJ+ 1

2
(iφ+1)2σ2

J − 1] = 0∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

λE[YSf1(φ,X + lnYS, V, t)− f1(φ,X, V, t)]

= λE[YSexp(α(τ) + αV (τ)Vt + iφ(Xt + lnYS))− f1]

= λE[YSexp(iφ(lnYS))f1 − f1]

= λf1E[Y iφ+1
S − 1]

∵ lnYS ∼ ND(µJ , σ
2
J)

∴ lnY iφ+1
S ∼ ND((iφ+ 1)µJ , (iφ+ 1)2σ2

J)

and thus E[Y iφ+1
S ] = e(iφ+1)µJ+ 1

2
(iφ+1)2σ2

J

⇒ (r + 1
2
V − λKY )iφ+ [κ(θ − V ) + ρσV V ]αV (τ)− α′(τ)− α′V (τ)V − 1

2
V φ2

+1
2
σ2
V V [αV (τ)]2 + iφρσV V αV (τ)− λKY + λ[e(iφ+1)µJ+ 1

2
(iφ+1)2σ2

J − 1] = 0.

Next, two ordinary differential equations (ODEs) for αV (τ) (based on V -terms) and

α(τ) (based on other terms) can be derived.

α′V (τ) = 1
2
σ2
V [αV (τ)]2 + [κ(θ−V )

V
+ ρσV (1 + iφ)]αV (τ) + 1

2
φ(i− φ),

α′(τ) = (r − λKY )iφ− λKY + λ[e(iφ+1)µJ+ 1
2

(iφ+1)2σ2
J − 1].

For the above two ODEs, there exist analytical solutions (see Bakshi, Cao, and Chen

(1997)). One can also refer to Appendix A in Nielsen and Schwartz (2004) for the de-

tailed steps of solving α′V (Z). If analytical solutions are not available, the Runge-Kutta

method (with the fourth-order being enough) can be employed to solve ODEs numeri-

cally.
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� As for β(τ) and βV (τ) in f2(φ,Xt, Vt, t), they can be solved by performing similar

steps.
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