
Ch 1. Wiener Process (Brownian Motion)

I. Introduction of Wiener Process

II. Itô’s Lemma

III. Stochastic Integral

IV. Solve Stochastic Differential Equations with Stochastic Integral

• This chapter introduces the stochastic process (especially the Wiener process), Itô’s
Lemma, and the stochastic intergral. The knowledge of the stochastic process is the
foundation of derivative pricing and thus indispensable in the field of financial engineer-
ing.

• This course, however, is not a mathematic course. The only goal of this chapter is to
build students up with enough knowledge about the stochastic process and thus to be
able to understand academic papers associated with derivative pricing.

I. Introduction of Wiener Process

• Wiener process, also called Brownian motion, is a kind of Markov stochastic process.

� Stochastic process: whose value changes over time in an uncertain way, and thus we
only know the distribution of the possible values of the process at any time point. (In
contrast to the stochastic process, a deterministic process is with an exact value at any
time point.)

� Markov process: the likelihood of the state at any future time point depends only on
its present state but not on any past states.

� In a word, the Markov stochastic process is a particular type of stochastic process where
only the current value of a variable is relevant for predicting the future movement.

� The Wiener process Z(t) is in essence a series of normally distributed random variables,
and for later time points, the variances of these normally distributed random variables
increase to reflect that it is more uncertain (thus more difficult) to predict the value of
the process after a longer period of time. See Figure 1-1 for illustration.
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Figure 1-1

• Instead of assuming Z(t)∼ND(0, t), which cannot support algebraic calculations, the
Wiener process dZ is introduced.

• 4Z ≡ ε
√
4t (change in a time interval ∆t)

ε ∼ ND(0,1) ⇒ ∆Z follows a normal distribution

⇒
{
E[∆Z] = 0

var(∆Z) = ∆t⇒ std(∆Z) =
√

∆t

• Z(T )− Z(0) =
n∑
i=1

εi
√
4t =

n∑
i=1

4Zi,where n = T
4t

⇒ Z(T )− Z(0) also follows a normal distribution

⇒
{
E[Z(T )− Z(0)] = 0

var(Z(T )− Z(0)) = n ·∆t = T ⇒ std(Z(T )− Z(0)) = std(Z(T )) =
√
T

↑
Variances are additive because any pair of ∆Zi and ∆Zj (i 6= j) are assumed to be
independent. Z(0) = 0 if there is no further assumption.

• As n → ∞, 4t converges to 0 and is denoted as dt, which means an infinitesimal time
interval. Correspondingly, ∆Z is redenoted as dZ.

• In conclusion, dZ is noting more than a notation. It is invented to simplify the repre-
sentation of the Wiener process, which is in essence a series of normal distributions with
variances in proportional to time.
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• Main properties of Wiener process {Z(t)} for t ≥ 0:

(i) (Normal increments) Z(t)− Z(s) ∼ ND(0, t− s).
(ii) (Independence of increments) Z(t)− Z(s) and Z(u) are independent, for u ≤ s < t.

(iii) (Continuity of the path) Z(t) is a continuous function of t.

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Other properties:

� Jagged path: not monotone in any interval, no matter how small a interval is.

� None-differentiable everywhere: Z(t) is continuous but with infinitely many edges.

� Infinite variation on any interval: VZ([a, b]) =∞.∥∥∥∥∥∥∥∥∥∥
variation of a real-valued function g on [a, b]:

Vg([a, b]) = sup
P

n∑
i=1

|g(ti)− g(ti−1)|, a = t1 < t2 < · · · < tn = b,

where P is the set of all possible partitions with mesh size going to zero
as n goes to infinity.

� Quadratic variation on [0, t] is t.

[Z,Z](t) = [Z,Z]([0, t]) = sup
P

n∑
i=1

|Z(ti)− Z(ti−1)|2 = t (will be proved later)

� cov(Z(t), Z(s)) = E[Z(t)Z(s)]− E[Z(t)]E[Z(s)] = E[Z(t)Z(s)].

(If s < t, Z(t) = Z(s) + Z(t)− Z(s).)

= E[Z2(s)] + E[Z(s)(Z(t)− Z(s))] = E[Z2(s)] = var(Z(s)) = s = min(t, s).

(The covariance is the length of the overlapping time period (or the sharing path)
between Z(t) and Z(s).)

• Generalized Wiener process

dX = adt+ bdZ

⇒
{
E[dX] = adt

var(dX) = b2dt⇒ std(dX) = b
√
dt
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⇒ dX ∼ ND(adt, b2dt)

⇒ X(T )−X(0) =
n∑
i=1

∆Xi ∼ ND(aT, b2T )

• Itô process (also called diffusion process) (Kiyoshi Itô, a Japanese mathematician, de-
ceased in 2008 at the age of 93.)

dX=a(X, t)dt+b(X, t)dZ

↓ ↓
drift and volatility (Both are not constants, so it is no more simple to derive E[dX]

and var(dX))

(Both generalized Wiener processes and Itô process are called stochastic differential equa-
tion (SDE).)

• For the stock price, it is commonly assumed to follow an Itô process

dS = µSdt+ σSdZ

⇒ dS
S

= µdt+ σdZ (also known as the geometric Brownian motion, GBM)

⇒ dS
S
∼ ND(µdt, σ2dt)∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

d lnS
dS

= 1
S
⇒ d lnS = dS

S
(WRONG!) (Note that this differential result is true only

when S is a real-number variable. This type of differentiation CANNOT be applied
to stochastic processes. The stochastic calculus is not exactly the same as the
calculus for real-number variables, since any change of a stochastic process must
come through the passage of a time period.)

In fact, stock prices follow the lognormal distribution based on the above assumption
of the geometric Brownian motion, but it does not mean d lnS ∼ ND(µdt, σ2dt).

• (Advanced content) Stochastic volatility (SV) process for the stock price (Heston (1993)):

dS = µSdt+
√
V SdZS,

dV = κ(θ − V )dt+ σV
√
V dZV ,

where V denotes the stochastic variance and corr(dZS, dZV ) = ρSV .

• (Advanced content) Jump-diffusion process for the stock price (Merton (1976)):

dS = (µ− λE[YS − 1])Sdt+ σSdZ + (YS − 1)Sdq,
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where dq is a Poisson (counting) process with the jump intensity λ, i.e., the probability
of an event occuring during a time interval of length ∆t is

Prob {the event does not occur in (t, t+ ∆t], i.e., dq = 0} = 1− λ∆t− λ2 (∆t)2 − ...
Prob {the event occurs once in (t, t+ ∆t], i.e., dq = 1} = λ∆t ,

Prob {the events occur twice in (t, t+ ∆t], i.e., dq = 2} = λ2 (∆t)2 → 0
...

and the random variable (YS − 1) is the random percentage change in the stock price
if the Poisson events occur. Merton (1976) considers lnYS ∼ ND(µJ , σ

2
J). Note that

dZ, YS, and dq are assumed to be mutually independent. The introduction of the term
(λE[YS − 1]) in the drift is to maintain the growth rate of S to be µ. This is because

E[(YS − 1)dq] = E[YS − 1]E[dq] = E[YS − 1]λdt.∥∥∥∥ If YS follows the lognormal distribution, E[YS − 1] = E[YS]− 1 = eE[lnYS ]+ 1
2
var(lnYS)

−1 = eµJ+ 1
2
σ2
J − 1.

II. Itô’s Lemma

• Itô’s Lemma is essentially based on the Taylor series:

f(x, y) = f(x0, y0) + ∂f
∂x

(x− x0) + ∂f
∂y

(y − y0)

+ 1
2!

[
∂2f
∂x2

(x− x0)2 + 2 ∂2f
∂x∂y

(x− x0)(y − y0) + ∂2f
∂y2

(y − y0)2
]

+ · · ·

Using the Itô’s Lemma to derive a stochastic differential equation:

Given dX = a(X, t)dt + b(X, t)dZ, and f(X, t) as a function of X and t, the stochastic
differential equation for f can be derived as follows.

df = (∂f
∂t

+ ∂f
∂X
a+ 1

2
∂2f
∂X2 b

2)dt+ ( ∂f
∂X
b)dZ,

where a and b are the abbreviations of a(X, t) and b(X, t).
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∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

The Itô’s Lemma holds under the following approximations:
(i)
(dt)1 → dt
(dt)1.5 → 0
(dt)2 → 0

...

(ii)
dZ · dZ =?
By definition, dZ · dZ = ε2 · dt.
∵ ε ∼ ND(0, 1)
∴ var(ε) = 1⇒ E[ε2]− (E[ε])2 = 1⇒ E[ε2] = 1⇒ E[(dZ)2] = dt
In addition, var((dZ)2) = var(ε2dt) = (dt)2var(ε2)→ 0 (because (dt)2 → 0)

⇒ dZ · dZ a.s.
= dt (“a.s.” means “almost surely”: an event happens almost surely if

it happens with probability 1.)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Itô’s Lemma vs. differentiation of a deterministic function of time.

∗ For a deterministic function of time f(t), if df
dt

= g(t), we can interpret that with an

infinitesimal change of dt, the change in f is g(t)dt, which is deterministic.

∗ The interpretation of the Itô’s Lemma: with a infinitesimal change of dt, the change

in f is (∂f
∂t

+ ∂f
∂X
a+ 1

2
∂2f
∂X2 b

2)dt+ ( ∂f
∂X
b)dZ. Note that the first term plays a similar role

as g(t)dt, but the second term tells us that the change in f is random.

∗ To apply the Itô’s Lemma is similar to taking the differentiation for stochastic processes.

• Based on the result of dZ ·dZ = (dZ)2 = dt, it is straightforward to infer that the quadratic

variation of the Wiener process over [0, t], i.e., [Z,Z](t) = [Z,Z]([0, t]) = sup
P

n∑
i=1

|Z(ti)−

Z(ti−1)|2, equals t.

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Similar to the derivation of the Itô’s Lemma that E[(dZ)2] = dt and

var((dZ)2)→ 0 when n→∞ (dt→ 0), (Z(ti)− Z(ti−1))2 converges to

ti − ti−1 almost surely if (ti − ti−1) is very small. This is because

E[(Z(ti)− Z(ti−1))2] = E[ε2(ti − tt−1)] = ti − tt−1, and

var((Z(ti)− Z(ti−1))2) = var(ε2(ti − tt−1)) = (ti − tt−1)2var(ε2)→ 0.

Thus, we can conclude that when n→∞ (ti − tt−1 → 0), sup
P

n∑
i=1

(Z(ti)− Z(ti−1))2 = t.

1-6



• Example 1: Apply the Itô’s Lemma to f = lnS, given dS = µSdt+ σSdZ.

⇒ d lnS = (0 + 1
S
· µS − 1

2
1
S2 · σ2S2)dt+ 1

S
σSdZ

= (µ− σ2

2
)dt+ σdZ.

� ∆ lnS = (µ− σ2

2
)∆t+ σ∆Z

⇒ lnSt+∆t − lnSt = (µ− σ2

2
)∆t+ σ∆Z ∼ ND((µ− σ2

2
)∆t, σ2∆t)

⇒ lnSt+∆t ∼ ND(lnSt + (µ− σ2

2
)∆t, σ2∆t).

� Consider T−t
n

= ∆t,
lnSt+∆t − lnSt ∼ ND((µ− σ2

2
)∆t, σ2∆t)

lnSt+2∆t − lnSt+∆t ∼ ND((µ− σ2

2
)∆t, σ2∆t)

...

lnST − lnST−∆t ∼ ND((µ− σ2

2
)∆t, σ2∆t)

⇒ lnST − lnSt ∼ ND((µ− σ2

2
)n∆t, σ2n∆t)

⇒ lnST − lnSt ∼ ND((µ− σ2

2
)(T − t), σ2(T − t))

⇒ lnST ∼ ND(lnSt + (µ− σ2

2
)(T − t), σ2(T − t))

⇒ The stock price at any future time point is lognormally distributed.

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

Another derivation: apply the stochastic integral on the both sides of the equation

⇒
∫ T
t
d lnSτ =

∫ T
t

(µ− σ2

2
)dτ +

∫ T
t
σdZ(τ)

↓
Since the integrand is a constant and the variable τ is a real-number
variable, it is simply an integral for a real-number variable.

⇒ lnSτ |Tt = (µ− σ2

2
)(T − t) + σ(Z(τ)|Tt )

↓
Z(T )− Z(t) ≡ 4Z(T − t) ∼ ND(0, T − t)

⇒ lnST − lnSt ∼ ND((µ− σ2

2
)(T − t), σ2(T − t))

• Example 2: Given dS = (µ − q)Sdt + σSdZ, for f = Se−q(T−t) −Ke−r(T−t), where f is
the value of a forward or futures, q is the dividend yield, K is the delivery price, and T is
the delivery date, one can derive that df = (µSe−q(T−t) − rKe−r(T−t))dt+ σSe−q(T−t)dZ.

• Example 3: Given dS = (µ− q)Sdt+ σSdZ, for F = Se(r−q)(T−t), where F is the forward
or futures price of a stock and q and T denote the divided yield and delivery date,
respectively, it can be obtained via the Itô’s Lemma that dF = (µ− r)Fdt+ σFdZ.
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• Itô’s Lemma for multiple variates
dS
S

= µSdt+ σSdZS (foreign stock price),
dX
X

= µXdt+ σXdZX (exchange rate: 1 foreign dollar = X domestic dollars).

Define f = S ·X (the value of a foreign stock share in units of domestic dollars)

df = [∂f
∂t

+ ∂f
∂S
· µSS + ∂f

∂X
· µXX + 1

2
· ∂2f
∂S2 · σ2

SS
2 + 1

2
· ∂2f
∂X2 · σ2

XX
2+

∂2f
∂S∂X

· ρXS · σS · σX · S ·X]dt+ ∂f
∂S
σSSdZS + ∂f

∂X
σXXdZX

⇒ df = [µSXS + µXXS + ρXSσSσXSX]dt+ σSXSdZS + σXXSdZX

⇒ df
f

= (µS + µX + ρXSσSσX)dt+ σSdZS + σXdZX (because f = SX).∥∥∥∥∥∥∥∥
dZS · dZX = εS

√
dt · εX

√
dt = εSεXdt

⇒ E[dZS · dZX ] = E[εSεX ]dt = ρXSdt
var(dZS · dZX) = (dt)2var(εSεX)→ 0

⇒ dZS · dZX
a.s.
= ρXSdt.

• (Advanced content) Given dS = (µ− λKY )Sdt+ σSdZ + (YS − 1)Sdq, where KY =

E[YS − 1] and f(S, t) as a function of S and t, the Itô’s Lemma implies

df = {∂f
∂t

+ ∂f
∂S

(µ− λKY )S + 1
2
∂2f
∂S2σ

2S2 + λE[f(SYS, t)− f(S, t)]}dt

+ ∂f
∂S
σSdZ + (Yf − 1)fdq,

where λE[f(SYS, t) − f(S, t)]dt is the expected jump effect on f , and (Yf − 1)dq is in-
troduced to capture the unexpected (zero-mean) jump effect on f , where (Yf − 1) is the
random percentage change in f if the Poisson event occurs. Note that λE[f(SYS, t) −
f(S, t)]dt+ (Yf − 1)fdq represents the total effect on f if the Poisson event occurs.

� Suppose f = lnS, the Itô’s Lemma implies

d lnS = (µ− λKY − 1
2
σ2)dt+ σdZ + JlnS,

where JlnS represents the total effect on lnS due to the random jump in S.

∥∥∥∥∥∥∥∥∥∥

If the jump occurs in S at t, we can obtain
S(t+)−S(t)

S(t)
= (YS − 1),

since (YS − 1) is the precentage change if the jump occurs (when dq = 1).
Rewriting the above equation leads to
S(t+)− S(t) = (YS − 1)S(t) = YSS(t)− S(t)⇒ S(t+) = YSS(t).

∥∥∥∥ The random jump in lnS at t, if the Poisson event occurs (when dq = 1), is
lnS(t+)− lnS(t) = lnYS + lnS(t)− lnS(t) = lnYS.
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According to the above inference, we can express the total jump effect by

JlnS = lnYSdq,

and thus

d lnS = (µ− 1
2
σ2 − λKY )dt+ σdZ + lnYSdq.

∗ Note that the expected jump effect in lnS is E[JlnS] = E[lnYSdq] = λE[lnYS]dt, and
the unexpected jump effect (Yf − 1)fdq is set to be equal to lnYSdq − λE[lnYS]dt.

III. Stochastic Integral

• Stochastic integral (or called Itô integral or Itô calculus): allows one to integrate one
stochastic process (the integrand) over another stochastic process (the integrator). Usu-
ally, the integrator is a Wiener process.

• Integral over a stochastic process:
∫ b
a
X(τ)dZ(τ), where X(τ) can be a deterministic

function or a stochastic process, and dZ(τ) is a Wiener process. (vs. integral over a real-

number variable:
∫ b
a
f(y)dy, where f(y) is a deterministic function of the real-number

variable y)

• Three cases of X(τ) are discussed: simple deterministic processes, simple predictable pro-
cesses, and general predictable processes (or say Itô processes).

• Stochastic integral for “simple deterministic” processes

If X(τ) is a deterministic process, given any value of t, the value of X(τ) can be known
exactly. Therefore, in an infinitesimal time interval, (ti−1, ti], the value of X(τ) can be
approximated by a constant Ci. The term “simple” means to approximate the process by
a step function. Denote the step function as Xn(τ), where n is the number of partitions
in [0, T ]. (In contrast, if X(τ) is a stochastic process, given any value of τ , we only know
the distribution of possible values for X(τ).)

• For simple deterministic processes, we can define the stochastic integral as follows. (This
definition is similar to the rectangle method to define the integral over a real-number
variable.)

∫ T
0
Xn(τ)dZ(τ) ≡

n∑
i=1

Ci(Z(ti)− Z(ti−1)) ∼ ND(0,
n∑
i=1

C2
i (ti − ti−1)),

where Xn(τ) is the discrete-time, step-function approximation of X(τ) given that [0, T ]
is partitioned into n (equal-size) intervals.
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Figure 1-2
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∗ Finally,
∫ T

0
X(τ)dZ(τ) is defined to be lim

n→∞

∫ T
0
Xn(τ)dZ(τ).

∗ Note also the variance lim
n→∞

n∑
i=1

C2
i (ti − ti−1) converges to

∫ T
0
X2(τ)dτ by definition.

∗ Consequently, the stochastic integral for a deterministic process yields a normal distri-
bution with a zero mean and a variance equal to

∫ T
0
X2(τ)dτ . (consistent with Properties

(iii) and (iv) of Itô integral on p. 1-13)

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

(i) According to the above definition, if X(t) = 1, the result of the stochastic integral is
consistent with the definition of the Wiener process.∫ T

0
X(τ)dZ(τ) =

∫ T
0
dZ(τ) = Z(τ)|T0 = Z(T )− Z(0) ∼ ND(0, T )

= lim
n→∞

n∑
i=1

(Z(ti)− Z(ti−1)) ∼ ND(0, lim
n→∞

n∑
i=1

(ti − ti−1)) = ND(0, T )

(ii) Alternative way to calculate the resulting variance of the stochastic integral:

var(
∫
XdZ) = E[(

∫
XdZ)2]− (E[

∫
XdZ])2 = E[(

∫
XdZ)2] = E[( lim

n→∞

n∑
i=1

Ci(Z(ti)− Z(ti−1)))2]

= lim
n→∞

n∑
i=1

n∑
j=1

CiCjE[(Z(ti)− Z(ti−1))(Z(tj)− Z(tj−1))]

↑
calculate the squared term in the expectation, and then apply the distributive property of
the expectation over the addition and scaler multiplication

= lim
n→∞

n∑
i=1

C2
i (ti − ti−1).

↑
because cov(Z(ti)− Z(ti−1), Z(tj)− Z(tj−1)) = 0, and var(Z(ti)− Z(ti−1)) = ti − ti−1
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• “Simple predictable” process: in the time interval (ti−1, ti], the constant Ci is replaced
by a “random variable” ξi, which depends on the values of Z(t) for t ≤ ti−1, but not on
values of Z(t) for t > ti−1. Therefore, Xn(t) is defined as follows.

Xn(t) = ξI{t|t=0} +
n∑
i=1

ξiI{t|ti−1<t≤ti},

where I is a indicator function and ξ is a constant. The corresponding stochastic integral
is defined as follows. ∫ T

0

Xn(τ)dZ(τ) ≡
n∑
i=1

ξi(Z(ti)− Z(ti−1)).

• The reason for the name “predictable”:

1. The value of X(t) for (ti−1, ti], ξi, is determined based on the information set formed
by {Z(t)} until ti−1, denoted by Fti−1

. It is also called that ξi is Fti−1
-measurable. (See

Figure 1-3.)

2. In contrast, the value of Z(ti) − Z(ti−1) will not realize until the time point ti, i.e.,
this value will be known based on the information set Fti . In other words, Z(ti) is
Fti-measurable. (See Figure 1-3.)

3. Therefore, we say that X(t) is “predictable” since we know its realized value just
before the time point at which Z(t) is realized.

4. In the continuous-time model, Z(t) is Ft-measurable (the realized value is known at
t). For any process that we can know its realized value just before t, we call this process
to be Ft−-measurable and thus “predictable”.

Figure 1-3

( )X t
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i
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1-11



• Stochastic integral of “general predictable” processes

Let Xn(t) be a sequence of simple predictable processes (which can be approximated
by a step function with a series of predictable random variables) convergent in prob-
ability to the process X(t), which is “general predictable” (i.e., X(t) is predictable

and
∫ T

0
X2(τ)dτ < ∞). The sequence of their integrals

∫ T
0
Xn(τ)dZ(τ) also converges

to
∫ T

0
X(τ)dZ(τ) in probability, i.e.,

lim
n→∞

∫ T

0

Xn(τ)dZ(τ) =

∫ T

0

X(τ)dZ(τ).

(Convergence in probability: the probability of an unusual outcome becomes smaller and
smaller as the sequence progresses.)

(In some text books, the general predictable process is also known as the predictable
process for short.)

• Any “adapted” and “left continuous” process is a “predictable” process.

A process is an adapted process iff it is Ft measurable. For example, the Wiener
process Z(t) is an adapted process.

A left-continuous function is a function which is continuous at all points when ap-
proached from the left. In addition, a function is continuous if and only if it is both
right-continuous and left-continuous. Since Z(t) is a continuous function of t, it must be
left-continuous.

Thus, we can conclude that Wiener process Z(t) is a predictable process, so Z(t) itself
(or even all Itô processes) can be the integrand in a stochastic intrgral. This is also the
reason for the name of the Itô integral.

Figure 1-4

Left continuous Right continuous
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• Solve
∫ T

0
Z(τ)dZ(τ), given Z(0) = 0.

Define Xn(t) =
n∑
i=1

Z(ti−1)I{t|ti−1<t≤ti} ( lim
n→∞

Xn(t) converging to Z(t) in probability)

∫ T
0
Xn(τ)dZ(τ) =

n∑
i=1

Z(ti−1)(Z(ti)− Z(ti−1))

= 1
2

n∑
i=1

[(Z(ti))
2 − (Z(ti−1))2 − (Z(ti)− Z(ti−1))2]

= 1
2
(Z(T ))2 − 1

2
(Z(0))2 − 1

2

n∑
i=1

(Z(ti)− Z(ti−1))2

⇒
∫ T

0
Z(τ)dZ(τ) = lim

n→∞

∫ T
0
Xn(τ)dZ(τ) = 1

2
(Z(T ))2 − 1

2
T .∥∥∥∥∥∥∥∥

When n→∞, (ti − ti−1)→ 0. Therefore, E[(Z(ti)− Z(ti−1))2] = ti − ti−1 and
var((Z(ti)− Z(ti−1))2) = var(ε2(ti − ti−1)) = (ti − ti−1)2var(ε2)→ 0. Note that
the same argument is employed to derive the quadratic variation of the Wiener
process on p. 1-6.

• Properties of Itô Integral:

(i)
∫ T

0
(αX(τ) + βY (τ))dZ(τ) = α

∫ T
0
X(τ)dZ(τ) + β

∫ T
0
Y (τ)dZ(τ) (distributive prop-

erty).

(ii)
∫ T

0
I{τ |a<τ≤b}(τ)dZ(τ) = Z(b)− Z(a), 0 < a < b < T .

(iii)E[
∫ T

0
X(τ)dZ(τ)] = 0.

(iv) var(
∫ T

0
X(τ)dZ(τ)) = E[(

∫ T
0
X(τ)dZ(τ))2] =

∫ T
0
E[X2(τ)]dτ (Itô Isometry).

∗ Note that the above properties are applicable for any Itô processes of X(t) and Y (t).
For other stochastic processes, not all of the above properties hold.

∗ Intuition for Property (iii): By considering Xn(t) =
n∑
i=1

X(ti−1)I{t|ti−1<t≤ti}, one can

obtain E[
∫ T

0
X(τ)dZ(τ)] = E[ lim

n→∞

∫ T
0
Xn(τ)dZ(τ)] = E[ lim

n→∞

n∑
i=1

X(ti−1)(Z(ti)−Z(ti−1))].

Since X(ti−1) can be correlated with Z(t) for t ≤ ti−1 but is independent of Z(ti) −
Z(ti−1), E[X(ti−1)(Z(ti)−Z(ti−1))] = cov(X(ti−1), Z(ti)−Z(ti−1))+E[X(ti−1)]E[Z(ti)−
Z(ti−1)] = 0.

• What are E[
∫ T

0
Z(τ)dZ(τ)] and var(

∫ T
0
Z(τ)dZ(τ))?

(i) ∵ E[(Z(T ))2] = var(Z(T )) + E[Z(T )]2 = T

∴ E[
∫ T

0
Z(τ)dZ(τ)] = E[1

2
(Z(T ))2 − 1

2
T ] = 0.

(Property (iii) can be applied to obtaining the identical result directly.)
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(ii) var(
∫ T

0
Z(τ)dZ(τ)) = 1

4
var((Z(T ))2)

= 1
4
{E[(Z(T ))4]− E[(Z(T ))2]2} = 1

4
{3T 2 − T 2} = T 2

2
.∥∥∥∥ If x ∼ ND(µ, σ2), then E[x4] = µ4 + 6µ2σ2 + 3σ4.

Since Z(T ) ∼ ND(0, T ), we can derive E[(Z(T ))4] = 3T 2.

Apply Property (iv) to finding var(
∫ T

0
Z(τ)dZ(τ)) as follows:

var(
∫ T

0
Z(τ)dZ(τ)) =

∫ T
0
E[(Z(τ))2]dτ =

∫ T
0
τdτ = 1

2
τ 2|T0 = T 2

2
.

IV. Solve Stochastic Differential Equations with Stochastic Integral

• How to solve X(t) systematically with the stochastic integral is one of the major appli-
cations of the stochastic integral.

• Given the Ornstein-Uhlenbeck process dX(t) = −αX(t)dt+σdZ(t) and X(0), solve X(t).∥∥∥∥ An important property of the Ornstein-Uhlenbeck process is that its drift-term setting
renders the dynamicof X(t) to be mean-reverting around 0.

According to the stochastic integral, X(t) should satisfy

X(t) = X(0) +
∫ t

0
µ(X, τ)dτ +

∫ t
0
σ(X, τ)dZ(τ).∥∥∥∥∥∥

Since µ(X, t) = −αX(t) is a function of X(t), µ(X, t) is a stochastic process as well.
Moreover, since the value of µ(X, t) is unknown due to the unsolved X(t). Thus,
we cannot derive X(t) by applying the stochastic integral directly.

Define Y (t) = X(t)eαt ⇒ dY (t) = eαtdX(t) + αeαtX(t)dt

(through the stochastic product rule introduced later)

= eαt[−αX(t)dt+ σdZ(t)] + αeαtX(t)dt

= σeαtdZ(t)

∥∥∥∥∥∥
By applying the Itô’s Lemma to Y (t) = X(t)eαt, since ∂Y

∂t
= Xαeαt, ∂Y

∂X
= eαt, and ∂2Y

∂X2

= 0, dY (t) = (∂Y
∂t

+ ∂Y
∂X

(−αX) + 1
2
∂2Y
∂X2σ

2)dt+ ∂Y
∂X
σdZ(t) = (Xαeαt + eαt(−αX) + 0)dt

+eαtσdZ(t) = σeαtdZ(t).
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⇒ Y (t) = Y (0) +
∫ t

0
σeατdZ(τ)

↓
a simple deterministic process

⇒ X(t) = e−αt(Y (0) +
∫ t

0
σeατdZ(τ)), where Y (0) = X(0).

∗ The idea behind the transformation Y (t) = X(t)eαt is to find a function Y (X, t) such
that the drift term of dY (t) is zero, and X(t) or Y (t) does not appear in the volatility term
of dY (t). Specifically, derive Y (X, t) by simultaneously solving ∂Y

∂t
+ ∂Y
∂X

(−αX)+ 1
2
∂2Y
∂X2σ

2 =
0 and ensuring neither X(t) nor Y (t) appearing in ∂Y

∂X
σ.

∗ A more general (but still problem dependent) version of the above method is to introduce
a transformation Y (X, t) such that the drift and volatility terms of dY (t) can be 0,
constant, deterministic functions of t, or functions of a known stochastic process U(t)
(but can be neither functions of X(t) or Y (t)).

∗ Later a systematical method is introduced to apply the stochastic integral to solving
linear stochastic differential equations, which are commonly assumed (higher than 80%
of probability) in the field of financial engineering.

• Solution of a linear stochastic differential equation (where α(t), β(t), γ(t), and δ(t) are
deterministic functions of t):

Given dX(t)=(α(t) + β(t)X(t))dt+ (γ(t) + δ(t)X(t))dZ(t), where the drift and volatility
terms are linear functions of X(t) and α(t), β(t), γ(t), and δ(t) are deterministic functions
of t. Solve X(t) provided that X(0) is known.

(i) We start to solve the SDE given α(t) = γ(t) = 0.

dU(t) = β(t)U(t)dt+ δ(t)U(t)dZ(t)

⇒ dU(t)
U(t)

= β(t)dt+ δ(t)dZ(t)

(Note that U(t) is similar to S(t), so we can apply the result on p. 1-6 to solve U(t).)

⇒ U(t) = U(0)exp(

∫ t

0

(β(τ)− 1

2
δ2(τ))dτ +

∫ t

0

δ(τ)dZ(τ))︸ ︷︷ ︸
(1)

(Note that U(t) follows a lognormal distribution except in the case of δ(t) = 0.)

(ii) Consider X(t) = U(t) · V (t), and U(0) = 1 and V (0) = X(0),

where dU(t) = β(t)U(t)dt+ δ(t)U(t)dZ(t),

dV (t) = a(t)dt+ b(t)dZ(t). (Note a(t) and b(t) could be stochastic processes.)
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� Stochastic product rule:

dX(t) = d(U(t)V (t)) = dU(t)V (t) + U(t)dV (t) + d[U, V ](t),

where d[U, V ](t) = dU(t)dV (t) = σUσV dt, where σU and σV represent the volatility

terms of dU(t) and dV (t), respectively.

(It can be proved by performing the Itô’s Lemma and the derivation is similar to that

of illustrating the multivariate Itô’s Lemma on p. 1-8.)

(Note the stochastic product rule is exclusively applied to X(t), which is the product

of two (stochastic) processes sharing a common dZ.)

⇒ dX(t) = [β(t)U(t)dt+δ(t)U(t)dZ(t)]V (t)+U(t)[a(t)dt+b(t)dZ(t)]+δ(t)U(t)b(t)dt.

� Extension to the integration by parts for stochastic processes:

U(t)V (t)− U(0)V (0) =
∫ t

0
V (τ)dU(τ) +

∫ t
0
U(τ)dV (τ) + [U, V ](t),

where [U, V ](t)= lim
n→∞

n∑
i=1

(U(ti)− U(ti−1))(V (ti)− V (ti−1)) (quadratic covariation).

� Solve a(t) and b(t) by comparing with the originally dX(t) process:

⇒ b(t) · U(t) = γ(t), a(t) · U(t) = α(t)− δ(t) · γ(t)

⇒ b(t) = γ(t)
U(t)

, a(t) = α(t)−δ(t)γ(t)
U(t)

⇒ V (t) = V (0) +

∫ t

0

α(τ)− δ(τ)γ(τ)

U(τ)
dτ +

∫ t

0

γ(τ)

U(τ)
dZ(τ)︸ ︷︷ ︸ ,

(2) where V (0) = X(0)

⇒ X(t) = U(t) · V (t) = (1)× (2)

• For nonlinear stochastic differential equation, one needs to employ the method introduced
on p. 1-15 to solve it.

• Brownian bridge (pinned Brownian motion):

dX(t) = b−X(t)
T−t dt+ dZ(t), 0 ≤ t ≤ T, X(0) = a

⇒ α(t) = b
T−t , β(t) = −1

T−t , γ(t) = 1, δ(t) = 0
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∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

U(t) = U(0)exp(
∫ t

0
(β(τ)− 1

2
δ2(τ))dτ +

∫ t
0
δ(τ)dZ(τ))

= exp(
∫ t

0
−1
T−τ dτ) = exp(ln(T − τ)|t0)

= exp(ln T−t
T

) = T−t
T

b(t) = T
T−t

a(t) =
b

T−t−0·1
T−t
T

= bT
(T−t)2

V (t) = V (0)︸︷︷︸+

∫ t

0

bT

(T − τ)2
dτ︸ ︷︷ ︸+

∫ t
0

T
T−τ dZ(τ)

X(0) = a bT
T−t − b

X(t) = U(t) · V (t) = T−t
T

[a+ bT
T−t − b+ T

∫ t
0

1
T−τ dZ(τ)]

X(t) = a(1− t
T

) + b t
T

+ (T − t)
∫ t

0
1

T−τ dZ(τ), 0 ≤ t < T∥∥∥∥∥∥∥∥∥∥∥

X(0) = a, and lim
t→T

X(t) = b (the reason for the given name)

X(t) follows a normal distribution for any t ∈ (0, T )
E[X(t)] = a(1− t

T
) + b t

T

var(X(t)) = t− t2

T
= Tt−t2

T
= t(T−t)

T

cov(X(t), X(s)) = min(s, t)− st/T
Figure 1-5

( )X t

t
T

b

a

lim ( )
t T

X t b




0

• The Brownian bridge is suited to formulate the process of the zero-coupon bond price
because the bond price today is known and the bond value is equal to its face value
on the maturity date. The disadvantage of formulating the bond price to follow the
Brownian bridge is that the price of a zero-coupon bond could be negative due to the
normal distribution of dZ(t) in dX(t).

� Evaluate E[max(Pt −K, 0)], where Pt ∼ ND(µ, σ2).

E[max(Pt −K, 0)] =
∫∞
K

(Pt −K) 1√
2πσ

exp(− (Pt−µ)2

2σ2 )dPt∥∥ Consider x = Pt−µ
σ
⇒ dPt = σdx
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=
∫∞
K−µ
σ

(xσ + µ−K) 1√
2π

exp(−x2

2
)dx

= σ
∫∞
K−µ
σ
x 1√

2π
exp(−x2

2
)dx+ (µ−K)

∫∞
K−µ
σ

1√
2π

exp(−x2

2
)dx

= σ −1√
2π

exp(−x2

2
)|∞K−µ

σ

+ (µ−K)[1−N(K−µ
σ

)]

= σ 1√
2π

exp(− (K−µ
σ

)2

2
) + (µ−K)N(µ−K

σ
)

= σn(µ−K
σ

) + (µ−K)N(µ−K
σ

),

where n(d) = 1√
2π

exp(−d2

2
), and N(c) =

∫ c
−∞

1√
2π

exp(−x2

2
)dx

• (Supplement) Given X(t) = a(1− t
T

) + b t
T

+ (T − t)
∫ t

0
1

T−τ dZ(τ),

prove (i) var(X(t)) = t(T−t)
T

.

(ii) cov(X(t), X(s)) = s− st
T

(if t > s).

(i) According to the fourth property of Itô integral, that is,

var(
∫ T

0
X(τ)dZ(τ)) =

∫ T
0
E[X2(τ)]dτ , we can derive

var(X(t)) = (T − t)2
∫ t

0
( 1
T−τ )

2
dτ = (T − t)2 ((T − τ)−1|t0)

= (T − t)2( 1
T−t −

1
T

) = t(T−t)
T

(Note that a(1− t
T

) + b t
T

in X(t) contributes nothing to var(X(t)).)

(ii) cov(X(t), X(s))

= cov(X(s) +X(t)−X(s), X(s)) (assume s < t)

= var(X(s)) + cov(X(t)−X(s), X(s))

= s(T−s)
T

+ cov((T − t)
∫ t

0
1

T−τ dZ(τ)− (T − s)
∫ s

0
1

T−τ dZ(τ), (T − s)
∫ s

0
1

T−τ dZ(τ))∥∥∥∥∥∥∥
(T − t)

∫ t
0

1
T−τ dZ(τ)− (T − s)

∫ s
0

1
T−τ dZ(τ)

T−s=T−t+t−s
=⇒ (T − t)

∫ t
s

1
T−τ dZ(τ)− (t− s)

∫ s
0

1
T−τ dZ(τ)

= s(T−s)
T
− (t− s)(T − s) var(

∫ s
0

1
T−τ dZ(τ))

= s(T−s)
T
− (t− s)(T − s)(

∫ s
0

( 1
T−τ )2dτ)

= s(T−s)
T
− (t− s)(T − s)( 1

(T−s) −
1
T

)

= sT−s2
T
− (t− s)(T − s)( s

T (T−s))

= sT−s2−st+s2
T

= s− st
T
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