Assignment 5

Price an arithmetic average call with the following payoff using the binomial tree model.

$$
\text { Payoff }_{\tau}=\max \left(S_{\mathrm{ave}, \tau}-K, 0\right),
$$

where $S_{\text {ave, } \tau}$ is the arithmetic average of stock prices calculated from the issue date until the current time point τ.

- Basic requirement (80 points):
(i) Implement the binomial tree model to price both European and American arithmetic average calls.
(ii) Implement the Monte Carlo simulation to price European arithmetic average calls.
(Inputs: $S_{t}, K, r, q, \sigma, t, T-t, M, n, S_{\text {ave, },}$, number of simulations, number of repetitions. Outputs: Option values for both methods and 95% confidence interval for Monte Carlo simulation.)
- Bonus 1 (5 points):

Compare the convergence rates of the linearly and logarithmically equally-spaced placement methods, i.e., plot a diagram to compare the option values of the two placement methods given $M=50,100,150, \ldots, 400$. The faster the option value decreases with M, the faster convergent rate the examined method is.

- Bonus 2 (5 points):

Compare the computational time of the following three methods to locate the positions of A_{u} and A_{d}.
$\left\{\begin{array}{l}\text { Sequential search (the traditional way) } \\ \text { Binary search } \\ \text { Linear interpolation method }\end{array}\right.$

