Assignment 1

Derive the closed-form formula for an option with the following payoff function:

• Basic requirement (80 points):

(i) Utilize the martingale pricing method to derive the closed-form formula by hands.(ii) Based on the formula you derive, implement a program to price this option.

(Inputs: S_0 , r, q, σ , T, K_1 , K_2 , K_3 , K_4 . Output: Option value.)

• Bonus (10 points):

Employ the Monte Carlo simulation to price this option.

Based on $\ln S_T \sim ND^Q (\ln S_0 + (r - q - \sigma^2/2)T, \sigma^2 T)$, draw 10,000 random samples for S_T to compute an option price. Repeat the above step 20 times to obtain the 95% confidence interval for the option value:

95% confidence interval = [mean of 20 repetitions $-2 \times (s.d. of 20 repetitions)$, mean of 20 repetitions $+2 \times (s.d. of 20 repetitions)$].