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Abstract

We conduct laboratory experiments on sender-recgiames with an incentive
for senders to exaggerate (such as security anggatting a rosy picture about earnings
prospects). Our results show that “overcommuriacéti-messages are more informative
of the true state than they should be, in equilibri—is consistent with a level-k model.
Eyetracking shows that senders look much more empéyoff rows corresponding to the
true state, and much less at receiver payoffs #taheir own payoffs. Senders’ pupils
also dilate more when their deception is largemignitude. Together, these data are
consistent with the hypothesis that figuring outwhto deceive another player is
cognitively difficult as assumed in the level-k nebd A combination of sender messages
and lookup patterns predicts the true state abwitetas often as predicted by
equilibrium. Using these measures would enableivec subjects to hypothetically earn

up to 16-21 percent more than they actually do.
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“Why do almost all people tell the truth in ordinaeveryday life?—Certainly not because
a god has forbidden them to lie. The reasonrstlyibecause it is easier; for lying demands
invention, dissimulation and a good memory.”

— Friedrich Nietzsche, Human, All Too Human, 11.5878/1996

|. Introduction

During the tech-stock bubble, Wall Street secumtyalysts were alleged to inflate
recommendations about the future earnings prospédiams, in order to win investment banking
relationships with those firm's. Specifically, analysts in Merrill Lynch used adipoint rating
system (1=Buy to 5=Sell) to predict how the stoauld perform. They usually gave two separate
1-5 ratings for short run (0-12 months) and long (more than 12 months) performance. Henry
Blodget, Merrill Lynch’s famously optimistic analys‘did not rate any Internet stock a 4 or 5”
during the bubble period (1999 to 2001). In ongecéhe online direct marketing firm LifeMinders,
Inc. (LFMN), Blodget first reported a rating of 2(d¢hort run “accumulate”—long run “buy”) when
Merrill Lynch was pursuing an investment bankintatienship with LFMN. Then, the stock price
gradually fell from $22.69 to the $3-$5 range. Whpublicly maintaining his initial 2-1 rating,
Blodget privately emailed fellow analysts that “LINMs at $4. | can't believe what a POS [piece
of shit] that thing is.” He was later banned frone tsecurity industry for life and fined millions of

dollars?

! For a detailed description of the tech-stock bepbee Michael J. Brennan (2004). For evidencarding analyst
recommendations affected by conflicts of interase Hsiou-wei Lin and Maureen F. McNichols (1998y &oni
Michaely and Kent L. Womack (1999).

2 See Complaint in Securities and Exchange Comnmissi¢tienry M. Blodget, 03 CV 2947 (WHP) (S.D.N.Y2003),
paragraph 11-12 and 70-72, Securities and Exch@ogemission Order Against Henry M. Blodget (2003)d &nited
States District Court Final Judgement on Securitied Exchange Commission v. Henry M. Blodget 03. Q@47
(WHP) (S.D.N.Y.) (2003).



This case is an example of a sender-receiver gaithedivergent preferences (sometimes
called a “cheap talk” or strategic information sarission game; see Vincent P. Crawford and Joel
Sobel, 1982). Sender-receiver games are simplelmof economic situations in which one agent
has an incentive to exaggerate the truth to anathent. The central issues in these games are how
well uninformed players infer the private infornwatifrom the actions of players who are better-
informed, and what informed players do, anticipgtihe inference of the uninformed players.
Given these behavioral patterns, mechanisms catesigned to encourage telling the truth given
likely behavior.

Incentives for strategic information transmissiae aommon. Besides the Blodget case
mentioned above, similar dramatic accounting fraudsthe last few years, such as Enron,
Worldcom, and Tyco, might have been caused by rnibentives of managers (and perhaps their
accounting firms) to inflate earnings prospéctor instance, Enron executives told shareholders
meetings that earnings prospects were rosy, asdhee time as the executives were selling their
own shares, leading to indictments and trials i0620 In universities, grade inflation and well-
polished recommendation letters help schools prentbeir graduated. Other examples of
incentives for strategic information transmissianlude government-expert relationships in policy
making, doctor-patient relationships in health caheices, teacher cheating on student testd

the floor-committee relationship in Congress.

% See Brennan (2004), pp. 8-9, and Brian J. Hallkewin J. Murphy (2003), pp. 60-61.

* According to an SEC complaint filed in court, Ketim Lay, Enron’s then chairman and CEO, said “Wk hii our
numbers” and “My personal belief is that Enron kt@can incredible bargain at current prices” ineamployee online
forum on September 26, 2001. However, in the grar months he was actually making net sales of &2€r million

in Enron stock (back to Enron). See Second Ame@tedplaint in Securities and Exchange CommissidRiehard A.
Causey, Jeffrey K. Skilling and Kenneth L. Lay, iCikction No. H-04-0284 (Harmon) (S.D. Tx.) (2004aragraph
81-82.

®> See Henry Rosovsky and Matthew Hartley (2002).

® For example, Brian A. Jacob and Stven D. Levith0@ show how public school teachers cheat on stude
standardized tests in response to high-power ineeaystems based on these test scores.



This paper reports experiments on a sender-racgarae. In the game, a sender learns the
true state (a number S) and sends a costless medsistiga receiver who then chooses an action A.
Payoffs only depend on S and A so the message“bhéeap talk.” The receiver prefers to choose
an action that matches the state, but the send@swze receiver to choose an action closer to S+b,
where b is a known bias parameter. The value siMaiied across rounds. When b=0 senders prefer
that receivers choos® so they almost always just announce S (i.e., MaB)l receivers believe
them and choose A=M. When b>0 senders would ptefexaggerate and announce M>S if they
thought receivers would believe them. Since subjeboose 1-5, the numbers in our game are
coincidentally the same as those used by Merrilhdty Indeed, when b>0, we find that our
subjects hardly ever report the number 1 (in onpe8&ent of 208 rounds), much as Blodget never
rated a stock 4 or 5 (the equivalent of 1-2 in game).

Besides measuring choices in these games, ourimemruses “eyetracking” to measure
what payoffs or game parameters sender subjectsloaleng at (see Appendix: Methods).
Eyetracking software records where players are itgpkon a computer screen every 4
milliseconds’ These data are a useful supplement to economatitysis of choices, when
decision rules which produce similar choices makértttive predictions about what information is

needed to execute these rules.

" Previous studies (see footnote 8) used a “Moubadmstem in which moving a cursor into a box opéms box’s

contents. One small handicap of this system istlieexperimenter cannot be certain the subjeattisally looking at
(and processing) the contents of the open box. sggtem measures the eye fixation so we can tieiubject’s eye
is wandering, and pupil dilation is measured atsame time (which Mouselab cannot do). Nevertseld®uselab
systems can be installed cheaply in many comptenseasure lookups of many agents at the same wimeh could

prove useful in running efficient subjects and gtnd attention simultaneously in complex marketthwwnany agents.

% See Camerer et al. (1993); Miguel Costa-Gomes& é2@01); Eric Johnson et al. (2002); Costa-Goaes Crawford
(2006); Xavier Gabaix et al. (2006); and Crawfa26(8).



The eyetracking apparatus also measures how nulgecss’ pupils “dilate” (expand in
width and area). Pupils dilate under stress, ¢ivgnidifficulty, arousal and paifl. Pupillary
responses have also been measured in the lieidetdicerature for many yearS. These studies
suggest that pupil dilation might be used to irfeceptive behavior because senders find deception
stressful or cognitively difficult.

Lookup patterns and pupil dilation could be usefuthe sender-receiver games, because
overcommunication of the true state is consistatit two rough accounts: strategizing and guilt, or
cognitive difficulty. Senders may feel guilty akialeceiving the receivers and potentially costing
the receivers money. According to this theory,dees will look at the receiver payoffs (since
seeing those payoffs is the basis of guilt) andr thepils will dilate when they misrepresent the
state (i.e., choose M different from S) due to eomatl arousal from guilt. In this story, the guilt
springs from the senders’ realization that theitioas are costing the receivers money, which
depends on seeing the receiver payoffs. For ex@gnpi Gneezy (2005) and Sjaak Hurkens and
Navin Kartik (2006) find that changing the knowrstoto others from deception lowers deception
by subjects. Sanchez-Pagés and Vorsatz (2007) #ietwovercommunication is caused by the
tension between normative social behavior and imees for lying. Eyetracking helps us explore
this insight further using data on whether potémtéceivers actually know those costs.

A different story is that senders find it cogndly difficult to figure out how much to

misrepresent the state. For example, senders réiatve that some other senders always tell the

° For pupillary responses to stress, see R. A. Hitkal. (1967), R. Bull and G. Shead (1979), and@=aC. Aboyoun

and James N. Dabbs (1998). For pupillary respotsegnitive difficulty, see Jackson Beatty (19&2)d B. C.

Goldwater (1972). For pupillary responses to ambaad pain, see C. Richard Chapman et al. (198®)Shunichi Oka
et al. (2000). Min Jeone Kang et al (2007) shoat ffupils dilate in anticipation of finding out tlswers to trivia
qguestions about which they are curious. (Their-ssbrted curiosity is also shown by fMRI to actvahe ventral

striatum, a brain region involved in anticipatesvaed or “prediction error” and learning; and cuiipsalso enhances
later memory for mistaken answers.)



truth, and receivers might therefore believe message truthful. Then strategic senders have to
think hard about how much to misrepresent the statake advantage of the receivers’ naiveté (as
in Crawford, 2003, Kartik, Macro Ottaviani and Fecasco Squintani, 2007, Ying Chen, 2007, and
Kartik, 2008). In this story, senders do not hav@ay much attention to receiver payoffs but their
pupils will dilate because of the cognitive diffigu of figuring out precisely how much to
exaggerate.

The experimental choices, eyetracking, and pujétidn measures generate four basic
findings:

1. Overcommunication in sender-receiver game is ctergisvith LO, L1, L2, and equilibrium
(Eq) sender behavior produced by a level-k (cogmithierarchy) model of the sender-
receiver game in which LO sender behavior is arathat truth-telling.

2. Eyetracking data provide the following justificat® for the level-k model of
overcommunication:

a. Attention to basic structureSender subjects pay attention to important pararset
(state and bias) of the sender-receiver game. ihdisates subjects are thinking
carefully about the basic structure of the gamesneif they are not following
equilibrium theory.

b. Self-centerednessSender subjects look at their own payoffs moranttiheir
opponents’. Hence, in addition to concerns regaradithers (Gneezy, 2005), self-

centeredness also plays an important role in seledeiver games.

2 see for example, F. K. Berrien and G. H. Hunting(®942), 1. Heilveil (1976), Michel P. Janisse 189, M. T.
Bradley and Janisse (1979, 1981), Janisse and &8rgdb80), R. E. Lubow and Ofer Fein (1996), anglivee P.
Dionisio et al. (2001).



c. Incorrect beliefs Sender subjects focus too much on the true ptteff row. This
bias is consistent with a failure to “think in tbpponent’'s shoes” as in Bhatt and
Colin F. Camerer (2005).

d. Strategizing from a truth-telling anchoiSender subjects focus on the payoffs
corresponding to the action a = s, as well as astup to a = s+b. These indicate a
“truth-bias,” which justifies the LO sender behaviof truth-telling, as well as
attempts to strategize from this anchor.

3. Right before and after the message is sent, seémugrés dilate more when their deception
is larger in magnitude. This suggests that subjésstl guilty for deceiving (as in Gneezy,
2005), or that deception is cognitively difficutsthe level-k model assumes).

4. Prediction: Based on the eyetracking results, wetgato predict the true state observed by
the sender using lookup data, messages, and pilgilod. This prediction exercise
suggests it could be possible to increase thewecgipayoff (beyond what was earned in
the experiments) by 16-21 percent. Finally, tHisdg shows the possible relevance of
psychology and neuroscience to economics. DouBesheim (2008) suggests that
Neuroeconomics will be successful if it can showvhmew non-choice data can solve a
prediction or normative problem that could not b/ed by standard choice data. One such
problem is how to extract private information fraoices. In the standard model, private
information is by definition not directly observabto outsiders (such as receivers in our
game) and can only be inferred assuming a particuladel of behavior (e.g., inferring
private values from auction bids). If eyetrackipgpil dilation, fMRI, or other biological
measures enable one to infer more about privatenrdtion than by using only choices,

those “new” data—new to economists, that is—havees@dded value for something



economists care about. Our data satisfy this @itebecause lookups and pupil dilation

enhance prediction of the true state beyond thdigirens derived simply from observed

messages (choice) and equilibrium theory.

This is the first study in experimental econonticause a combination of eyetracking and
pupil dilation, and is, of course, exploratory asdherefore hardly conclusive. But the eyetragkin
and pupil dilation results by themselves suggest tine implicit assumption in theories of “cheap
talk” in games with communication— namely, that ef@ton has no cost— is not completely right.
The Nietzsche passage quoted above describes gmitice load of deception. Mark Twain also
famously quipped, “If you tell the truth, you doh'ave to remember anything'” The corollary
principle is that if subjects want to misrepresin state to fool receivers, they have to figure ou
precisely how to do so (and whether receivershalfooled). This process is not simple and seems
to leave a psychological signature in the formooking patterns and pupil dilation. Future thesrie
could build in an implicit cost to lying (which mhgalso vary across subjects and with experience)

and construct richer economic theories about wiesetion is expected to be widespread or rare.

[l. The Sender-Receiver Game

In each round of the experiments, subjects plgsrae of strategic information transmission,
involving cheaptalk (Crawford and Sobel, 1982). eQuayer always acts as the sender, and the
other as the receiver. The sender’'s eye movemeaatpapil dilation are measured with a head-
mounted Eyelink Il eyetracker (see Appendix: MegjodAt the beginning of the round, the sender
is informed about the true state of the world, whie described as a “secret” number S uniformly

drawn from the state spaBe= {1, 2, 3, 4, 5}, and is informed about the bilmsvhich is either 0, 1,



or 2 with known probabilities. The receiver knothe bias b, but not the realization of the state S.
Both players are informed in instructions aboutlibsic structure of the game.

The sender then sends a message to the receoarttie set of messaghk = {1, 2, 3, 4,
5}.12 After receiving a message from the sender, toeiver chooses an action from the action
spaceA ={1, 2, 3, 4, 5}. The true state and the recessaction determine the two players’ payoffs
in points according togu= 110 — 20 - |S -Af, and ¢ = 110 - 20 - |S + b —A}, where @ and
are the payoffs for the receiver and the sendspedively. Note that the receiver earns the most
money if her action matches the true state (singrepayoff falls with the absolute difference
between A and S). The sender prefers the receveinoose an action equal to S+b. This payoff
structure is made known to both senders and reseiv@gure S1 shows the screen display for b=1
and S=4.

The most informative equilibrium for b=2 is “babidi’, in which the sender sends an
uninformative message, while the receiver ignonesmessage and chooses A=3 based on her prior
beliefs. When b=1, the most informative equilibniwequires the senders to send messages {1}
when S=1, and send {2,3,4,5} when S is 2-5. Wheh thwe receivers should choose action A=1
when seeing M={1}, and A=3 or 4 when seeing M={2,3}.* When b=0, truth-telling by
choosing M=S (and receivers choosing A=M) is thesimaformative equilibrium.

On the other hand, following Hongbin Cai and Jos&phVang (2006), the level-k model

for the sender-receiver game starts with LO sene® has the lowest level of sophistication)

M Quotation taken from Mark Twain’s Notebook, 1894.

2 Following Cai and Wang (2006), we use the spedcifissage, “The number | received is X" to eliminaossible
misinterpretation of the message (which contribtitethe multiple equilibria problem typical in tleetypes of games
resulting form the need to assign meaning to mesyag

3 Thanks to David Eil for clarifying the equilibriuranalysis. Due to discreteness, there is anothée-kdge
equilibrium with b=1 that produces higher infornaatitransmission: Senders send messages M={1,2}{3pd5},
while receivers choose A=2 and 4. However, thigildyium is not robust since senders who see S=2xactly
indifferent between sending M={1,2} and M={3,4,5Moreover, the main results of the paper do nongbhaeven if
we consider this equilibrium (then Corr(S,A) = al7and w= 94.56).



would simply tell the truth, and LO receivers bessponding to LO senders by following the
message. Moving up the hierarchy, L1 senders esgtond to the LO receivers by inflating the
message (stating their preferred states), and Ickivers best respond to L1 receivers by
discounting the message. Such procedure is cadiruntii we reach the most informative
equilibrium prediction. In addition, we includesaphisticated type (SOPH) which best responds to
the empirical distribution of opponent’'s behaviof.able 1 provides the list of different level-k
types for b=0, 1, and .

Under both equilibrium and level-k models, the canapive statics are similar: Information
transmission decreases as the bias increaseshthoei¢evel-k model still allows transmission even
when the bias is so big that the equilibrium mogeédicts babbling (zero transmission).
Informativeness is measured by the correlation eetwactions and the true states, and by receiver
payoffs (more informative equilibria have highemegted payoffs). In addition, we assume a
literal interpretation of messages, and measuréitiiermativeness” of senders’ messages by the
correlation between the true states and the mesddgeHow “trusting” the receivers are can be
measured by the correlation between the messagé®receive and the actions A they take.
These comparative statics predictions were tesgelbbn Dickhaut et al. (1995), Andreas Blume et
al. (1998, 2001), and Cai and Wang (2006). Overoanication—messages are more informative
of the true state than they should be, in equiir—are typically found in these studies, and Cai
and Wang (2006) suggest two bounded rationalityaggtions: the level-k model and quantal

response equilibrium.

14 cai and Wang (2006) only constructed a level-k ehddr the case where the most informative equiilifor is the
babbling. Here we extend it to other biases. Alge use the econometric methods developed by @stees and
Crawford (2006) to estimate individual types.

> Such a natural language interpretation is justifig Blume et al. (2001) findings that equilibritmressages tend to
be consistent with their natural language meaniagd,is used in Cai and Wang (2006). Moreover,ynmehavioral
theories of lying, such as Crawford (2003) and iKafttaviani and Squintani (2007), also lead tis #ort of natural
language interpretation since naive receivers wtakd the message at face value.



To be sure that subjects learn, and to collect afltrials to pool across, the same game is
played 45 times among the two players with randbices of bias b (and random states) in each
round. Because we could only eyetrack one or mmests at a time, we ran two sets of similar
experiments. Only the senders were hooked upetonibbile Eyelink eyetracker (although studying
receivers’ eye fixations would be useful in futuverk). In the first set, we used a partner protoco
in which a pair of subjects played repeatedly iixed-role protocol where b=0, 1, 2 with known
equal probability.

In the second set of experiments, we randomly nealtckix subjects into pairs using
stranger-matching protocol, with different reces/@r each round (with no immediate rematching
with the same receiver), and eyetracked two ofktralers in each group. Values of b=0, 1, 2 were
used with known probabilities (0.2, 0.4, 0.4) sinee are less interested in the no-bias (b=0) case
than in the bias (b>0) cases. We also added smise (integers -4 to +4 with equal probability,
i.i.d. across payoff cells) to each payoff to mimenmemory effects. Since the noise is small, the
equilibrium remains the same. To further eliminaty memory effect, the bias parameter was not
shown to the eyetracked senders on the screeteathghey were forced to look at the payoff table
to infer it. Thus, the second set of experimesitsailled the “hidden bias” treatment, while thstfir
set is called the “displayed bias” treatment. Tésults reported below focus entirely on the eye
fixations and pupil dilation of the eyetracked sersd and the message choices of all senders and
action choices of receivet8.

Subjects’ choices are compared to the most infawaaguilibrium in the one-shot game.

Moreover, using predictions from a level-k modealfle 1), we estimate individual sender types

16 However, in the second set of experiments, twoheftivelve eyetracked subjects experienced techdiffadulty
during the experiment. Hence, we dropped them ¢at well as the corresponding receiver subjebisices).

" We do not consider possible dynamic equilibriuat tmight sustain higher information transmissioreleThis is not
a problem for b = 0 or 2. When b = 2, babblinghis only equilibrium in the one shot game and baakinduction

10



with a quantal response like “spike-logit” errorusture, using the econometric analysis developed
by Miguel Costa-Gomes and Crawford (2006).

Subjects were 60 Caltech undergraduates recruited the Social Science Experimental
Laboratory subject pool. Twelve pairs were rumhia first set and six sessions of six subjects were
randomly matched in the second set. They earntdtleba $12 and $27 in addition to a $5-15
show-up fee. To compare across pairs, in the alyspias treatment we use the same set of
randomly drawn biases and states for 9 of the ¥3,pand use two other sets of parameters for the
remaining 3 pairs to see if there were any effémtsising the same parameters. In the hidden bias
treatment, we used different randomly pre-drawmmeaaters for each of the six sessions.

While 60 subjects might appear to be a small samijze'® most experimental studies with
larger samples have many fewer choices per subjéet.eyetracked subjects play 45 games, and
make a very large number of eye fixations; so weehalot of data for each subject and can often

draw confident statistical conclusions from thesmple sizes?

[1l. Results

[lI.LA Comparative Statics and Behavior

What do _players choose? Figures 1-3 display the three dimensions of @& choice

data—states, messages and actions—for the thredéebiels b = 0, 1 and 2. To save space, data are

yields the babbling equilibrium for all finitely peated games; when b = 0, the one shot game equilitalready has
full information transmission and there is no rofon improvement. Also note that overcommunicatisrthe most
striking when b = 2. Random rematching in the bidBlias experiments also make it difficult for refeel-game effects
to everyone.

18 We successfully eyetracked 22 of the 60 subjedtish is considered large sample size for psychophysical studies
involving eyetracking.

9 As we note below, for a primary analysis predigtpupil dilation from observables, a split-sampisttcomparing
two groups of five subjects yields comparable rtssulthe two sub-samples.

11



shown for the hidden bias condition only; the beétiais similar for the displayed bias condition
and analogous Figures are in a supplemental Appe(felgure S2-S4). [Note to referees:
supplemental intended for online access only.]

Each Figure is a 5-by-5 display. The true statés cbrrespond to the five rows and the
sender messages 1-5 correspond to the five coluitisin each stage-message cell, there is a pie
chart. The area of the pie-chart in each celldalexl by the number of occurrences for the
corresponding state and message sent by sendersjast common state-message pairs have the
largest pies. Hence, the rows indicate sendaisatior with respect to different states and the
columns represents the “informativeness” of eacksage, determined by the distribution of states
conditional on each particular message. Seveagjotial lines connect predicted messages for
various level-k types. Each pie chart shows tistridution of actions chosen by the receiver for
that state and message, using a gray-scale rafrgimgwhite (action 1) to black (action 5). The
average receiver action is the number inside tee pi

For example, when b=0, and there is no confliahtdrest, large pie-charts are concentrated
on the diagonal (LO/Eq sender behavior), which wésaal way of showing that the senders almost
always send a message corresponding to the trigee dtéoreover, these pie-charts mostly contain
the same color ranging from light (lower actions)diark (higher actions) as the message number
increases across columns, showing that the reseif@low senders’ recommendation when
choosing their actions. The distribution of stdEquencies conditional on each message (i.e.,
down each column) almost degenerates into masdspofrthe true states, indicating nearly full
information transmission. This corresponds to thwst informative) truth-telling equilibrium

predicted by equilibrium theory, as well as theBE@type in the level-k model.

12



When b=1, and there is an incentive to bias thesages upward, the results are different.
There is a large tendency for deception, whichvident from having some large pie charts off the
diagonal. This departure is lopsided—only the uppagonal of Figure 2 is populated with large
pie charts® That is, for a given state, the most common nyssare the state itself or higher
messages. Furthermore, the largest pie charigobf ®w are mainly on the line one column or two
columns to the right of the diagonal (i.e., staf8d and S+2), consistent with L1 and L2 sender
behavior. Within the upper diagonal, the pie-clygts darker and darker going down and right,
showing how the receivers correctly increase theiions as the state and message increase. Since
the conditional distribution of states (columngrigure 2) shift from a mass point on the true state
(as in Figure 1) to a distribution skewed towardtest3 to 5, some information is transmitted.
However, this distribution is not consistent witte {1}-{2, 3, 4, 5} partition equilibrium predicted
by equilibrium theory, which requires that disttiloms of messages and actions for the bottom four
rows (states 2-5) should all look the safthe.

Finally, when b=2, equilibrium theory predicts @bkng equilibrium. If they were playing
this equilibrium, the pie-charts in each cell wobk roughly the same size (up to random sampling
error of state frequencies) and the shading digiohs on each pie-chart would be the same. In fact
there is still a substantial amount of informatteansmitted, since the columns in Figure 3 do not
all show the same uniform distribution of stategfrencies? However, many senders still sent

message 5, especially for states 2 to 5. And aaoiel amount of receivers did chose action 3, as

20 Note that this one-sided deception can potentizlgkfire since if seeing a message 1 indicatesrtigestate is 1, the
state is less likely to be 1 when other messages sant.

2L|f subjects were playing according to the pamitequilibrium, column 1 should have probability A state 1, and
zero probability elsewhere, indicating the staténdpen partition {1}, while column 2 to 5 should lahave equal
probability distributions (say, a mass point atr5161 each) on states 2 through 5, and zero elsewliveicating the
state being in partition {2,3,4,5}).

% For instance, in Figure 3, if the message isd trine state will never be more than three.

13



predicted in the babbling equilibrium. This is cistsnt with the level-k model, since L1, L2, and
Eq senders all send message 5 for states 3 to 5.

What are the comparative static results? Looking at subjects’ choices (M and A), we

find that the key comparative static predictionGrawford and Sobel (1982) holds in the data. As
the bias b increases, the information transmittedrehses, measured either by the correlation
between state S and action A, or by receiver payoff

Table 2 shows that the actual information transgditmeasured by the correlation between
states S, actions A, and messages M. Correlatieasease as b increases, for both the displayed
bias and hidden bias treatments. In the hiddes#bgatment, there are data from both senders who
are eyetracked and senders with “open boxes” (etragking). They are reported separately as a
check on whether eyetracking, per se, changes lwehaMote that even when the bias is so large
(b=2) that theory predicts babbling (i.e., no clatien between S, A and M), the correlations are
still around 0.5 in the displayed bias treatmerd @8 in the hidden bias treatment. The difference
between the two treatments could be attributecetthnoise introduced by the matching procedure,
or the reduction of repeated game effects undedomnmatching. There are also very small
learning effects: correlations and payoffs riseossr trials for b=0 and fall for b>0 (weak
convergence toward equilibrium; see supplementgrpeidix, Table S2). Payoffs also decline
with bias, as predicted by theory. However, theeneer payoffs are close to those predicted by
theory. There is also no discernible effect ofngeeyetracked versus seeing all payoffs (“open
boxes”) in the hidden bias sessions.

When the bias b is large, information transmiss®rhigher (measured by correlations
among S, M and A) and payoffs are higher than ptedi by equilibrium theory. These data

demonstrate the “overcommunication” (too much ttefhing) reported in Cai and Wang (2006).
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Note that the correlations in the display biasttrent are higher than those in Cai and Wang (2006),
which is what one would expect given the partnetqmol in this treatment (subjects were paired
with the same person throughout the experimemt)Cdi and Wang (2006), they allow subjects to
match with the same person owlyceduring the entire experiment.

Can individual players be classified as level-k tygs? We classify the sender subjects into

various types according to Table 1, assuming stdbjetnain the same type across different biases
using the “spike-logit” estimation as in Costa-Gaena@d Crawford (2006). The results are shown
in Table 4. Together, subjects are classified/psgd LO-L2 (18%, 25%, 25%), SOPH (14%) and Eq
(18%), with good compliance (above 60% except foe @vho could not be classified). There is
more high-type classification in the hidden biasssens. Individual level classifications do comfir

that subjects are choosing according to level-k$yms hinted in the aggregate choice tfata.

[11.B Lookup Patterns

Since the level-k model predictions explain induadl behavior, it is natural to ask whether
additional lookup data can provide justificatiom fts assumptions. Hence, we organize the lookup
results according to the following level-k assuraps:

1. Attention to structureilnstead of perceiving any deviation from perfeatianality as
impossible to model, the level-k model assumesestbjstill think hard when playing the game.
Hence, significant attention should be paid to ingrt parameters of the sender-receiver game,
such as state and bias.

2. Self-centeredness:The level-k model assumes subjects care mainbutatheir own

payoffs and best respond to what they perceiveretiveuld do, instead of the consequences to

% Comparing the classification results with thatG#i and Wang (2006), we see a similar pattern énhidden bias
(having few LO, mostly L1 beyond) than the displtags treatment (having one third LO). This refeitte effect of the
paired design in the display bias treatment.
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others, as in Gneezy (2005). This should inducdess to pay more attention to their own payoffs
than others.

3. Incorrect beliefs: The level-k model assumes subjects best respppértceived beliefs
about their opponents’ behavior, which are incdesiswith what opponent’s actually db. If
senders cannot think like receivers (who does mowkthe true state), he would put too much
attention on the payoff row corresponding to the tstate, instead of treating all states equally.

4. Strategizing from a truth-telling anchoithe level-k model assumes an anchoring LO
behavior of truth-telling. If truth-telling is wihaubjects actually perceive as the starting pint
strategize, we should see attention put at payafifeesponding to the action a=s (LO), a=s+b (L1),
and so on.

Are senders paying attention at all? Table 5 shows the average lookup time (excluding

fixations shorter than 50msec) for various numbmrsthe screen which are parameters of the
game?® Senders clearly are thinking carefully about tamg because they look up the state and the
bias parameter (if available) for about 1 secortdl ttwhich is 2-6 fixations, about 275msec per
fixation). The low time per lookup is a remindbat the eye glances around very rapidly, making
frequent quick fixations, as is typical of othesks including reading. This result supports the
level-k model assumption that non-equilibrium babaganbe modeled as thoughtful use of payoff
information.

Are senders “self-centered”? Senders look at their own payoffs longer. In thepldly bias

treatment, they look at their own payoffs aboutcevas long as they look at receiver payoffs. The

ratio of lookup time for sender and receiver payadfthe same for a small bias (b=1) and large bias

24 all subjects are SOPH who correctly best respmnothers, SOPH behavior should coincide withiléagium (Eq)
behavior.
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(b=2). Moreover, for b=2, which creates the nsxstpe for guilt to constrain deception, we divide
senders into those who looked more often at recegeagoffs, and those who looked less often
(relative to the median sender-receiver lookingpjatmportantly, the high receiver-lookup group
is actually more deceptive than the low group, Wwhgalso inconsistent with the guilt hypothesis
that the more one cares about other’s payoffs aokslat them, the less one should dec&ive.

In the hidden bias treatment, subjects look atstaée variable less often, compared to the
displayed-bias case, but look at payoff numbersuabwice as often. There is still a strong bias
toward looking at own (sender) payoffs, but theoraf sender-to-receiver payoff looking time in
the b>0 cases is around 1.5, rather than 2. Seladerapparently looking more carefully at receiver
payoffs because they must do so to determine & biThese results support the level-k model
assumption that subjects are self-centered sdhbgtmainly care about their own payoffs and best
respond to what they perceive others might do.

Note that therés a reduction in looking times across trials, whieim be seen by comparing
total response times in Table 5 from earlier pexi@t15) to those totals in later periods (31-45).
Subjects spend about 40 percent less responsdrtithe later trials compared to the earlier one.
There are no striking differences in the speedupoking across bias levels or treatments, however.

Do _senders have a “curse of knowledge"?Table 6 shows that subjects look about five

times longer at payoffs in the rows correspondmthe true state than they look at payoffs in rows
corresponding to each of the four other states.eWthe bias is 0 this fixation on the actual siate

understandable (and subjects typically choose rgesgS), but the disproportionate attention to

% The number of separate fixations is very highlyrelated with the lookup time—in no cell is the eage time per
fixation less than 250msec or greater than 300msecthe number of fixations can be approximated weltlividing

the Table 5 figures by 275 msec. Both fixationd lokup time are reported in the supplemental Aplpe(Table S3).
% For the high group, the correlation between states messages is 0.55, and the average LIE_SIBBSs for the
low group, the correlation is 0.69, and the aveld@e SIZE is 0.71.
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actual state payoffs is comparable when therebiasiof 1 or 2’ This result indicates that subjects
do not “think in others’ shoes”, and cannot thiikela receiver (who does not know the true state).

Thus, it supports the level-k model assumption ski@liects have incorrect beliefs regarding others.

Do _senders strategize starting from “truth-telling”? Tables 5-6 show there is a strong
bias for senders to look more at their own paydadfg] to look at payoffs from the state they know
to be the true one. More detailed information ablooking patterns across state-action pairs is
conveyed by the icon graph in Figures 4-5 (devealopg Johnson et al., 2002). For brevity we
show only data from the hidden bias treatments witbitive biases (displayed bias data are in the
supplemental appendix, Figures S6-S7).

Each box in Figures 4-5 represents the attentiad fmathe payoff corresponding to a
different state-action combination. Parts (a) dmdrépresent attention to the sender payoff boxes
and the receiver payoff boxes, respectively. Thd#thwof the box is a linear function of the average
number of fixations on that box. The height of thex is a linear function of the average total
looking time in that box. Boxes which are wide dalil were looked at repeatedly (wide) and for a
longer time (tall). The vertical bars in the figilumns represent the sum of looking time across
each row. Longer bars represent longer time flostate-action boxes in that state. The “ruler” in
the upper right shows the scale of looking time aoutnber of fixations that can be used to
“measure” each box.

Figure 4 shows the icon graph for bias B&1The first thing to notice is that subjects spend

much more time looking at their own payoffs (Figded than the payoffs of receivers (Figure 4b),

2" Note that Table 6 indicates significant statidtipawer to detect the actual state (i.e., to deliestin which the
message M deviates from the true state S). Thait ieceiver who had online sender looking stasistiould predict
what the actual state was rather reliably. Of seypit is not clear how the senders would behadetiinay known that
their lookup patterns were monitored by the reasive

% \When the bias b=0 the looking data are very cl&@ubjects look almost exclusively at their own g0
corresponding to the actual state S and correspgnéceiver action A, and they look at the recepayoffs from the
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as the Table 5 statistics show. Subjects’ loolarpsalso more frequent and longer for actions that
are equal to the actual state S or S+1.

Figure 5 shows the lookup icon graphs for bias b=&nders again look at their own
payoffs more often than their opponents’ payoighen the state S is 1-3 they tend to look at their
payoffs from actions corresponding to S, S+1 an@.S¥his is consistent with search behavior
required to infer the hidden bias. However, thosghjects could have looked at any action A, A+1,
A+2, they chose the action corresponding to S, amod at truth-telling. However, when the state
is 4 or 5 this pattern crumbles as states S+2 arildd® not exist and subjects spread attention
across more actions. When S = 5 and nothing terbigtan telling the truth, there is generally less
lookup activity.

Comparing the statmessagechoice frequencies illustrated with pie-chartsFigures 2-3
(for b=1 and b=2) with the corresponding attenticon graphs for stataetion payoffs in Figures
4-5 shows a strong overlap: Senders tend to chsiade-message pairs which overlap with the
state-action payoffs they look at most. This oyeilaplies that the messages senddrgoseare
most informed by the payoffs fromctionswhich correspond to those messages—that is, sender
are acting as if they expect receivers to choos®mrac corresponding to their own (sender)
messages. This overlap shows a kind of strategiieté@in which senders expect receivers to act as
if their messages reveal the true state. Thislapesets the stage for a prediction analysis irclvhi
the true states might be predicted from the messsgeders choose and from the payoffs they look
at most often. Before proceeding to those prediciivalyses, we introduce pupil dilation responses

and see how those correlate with behavior.

same S-A pair less often than they look at thein payoffs (1/2 in the display bias treatment arli2/the hidden bias
treatment). See Appendix Figure S5.
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[11.C Pupil Dilation

As noted in the introduction, pupils dilate wheropke are aroused or make cognitively
difficult decisions. Our first exploratory steptis treat pupil dilation as a dependent variable and
see whether the degree of behavioral deceptiorh&ysénder is correlated with pupil dilation. It
may be that pupil dilation is so poorly measuredsaweakly linked to deception, that there is no
reliable correlation. However, we see that decepsiaeliably correlated with pupil dilation.

To correlate pupil dilation with senders’ messages, calculate average pupil sizes for
various time periods before and after the sendeessage decision, and see if we can predict pupil
dilation using the bias b and the amount of decepfimeasured by the absolute distance between
states and messages, |M-S|).

To record their message M, senders are instruotkabk at a series of decision boxes on the
right side of the screen, which contain the numletis 5 (corresponding to the possible numerical
messages). The software is calibrated to recorecesidn after the subject has fixated on a single
decision box for 0.8 seconds—that is, the subjelat®se by using their eyes, not their hafids.

Since there is a time lag of at least 0.8 secoddsn the instant subjects “made up their
minds” and the recording of this decisifhwe define thedecision timeas the first time subjects
view any of the boxes in the decision boxes areajiged they continue to look at the decision box

area for more than 98 percent of the time untilsthiéware records a decisioh.

2 Allowing eye fixations to determine actual choidesvidely used in research with monkeys. For hnsnanaking
choice hands-free is an advantage if psychophygitdd measurements are being recorded simultanedesy.,

galvanic skin conductance on the palms, heart sitek even small hand movements add noise to theasurements.
*This time lag can be longer if the subject is netfgctly calibrated, and hence, needs extra timpeidorm the
required fixation. Another possible situation ikem the subject “changed her mind” and looked #erdint decision
boxes.

31 Running similar regressions show that using @idn of 99 percent or 95 percent would yield similesults, though
slightly weaker in the hidden bias treatment. Mowe¥, even a noisy 90 percent would still produse same
gualitative results, though some results are liggsfieant.
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Average pupil sizes are regressed on the amoudéeadption for different biases, and the
absolute size of the deception (LIE_SIZE = |M-&$),well as bias and state dummies, controlling
for subject random effects and individual learnirends (picked up by round number and squared
round number variables interacted with individuaimiies). All standard errors we report are

robust standard errors. The specification is:

(1) PUPIL = a+i,8]b [LIE _SIZEBIAS, +Y_ B,, [BIAS, +Y_ B, [STATE

b#2 s#3

K
+3 @, (8UBJ, + (. ,ROUNDIBUBY, + y, ,ROUND? [BUBY, )+ &

kex k=1
where « is the baseline, and
PUPIL = Average pupil (area) sizeat time frame: 1.2 to 0.8 seconds, 0.8 to 0.4 seconds, 0.4 to 0
seconds before, and 0 to 0.4 seconds, 0.4 to 8dhds after the decision tini&.Here,
we normalize each individual's average pupil siz&@0*
LIE_SIZE = The “size” of the lie or the amount adaption, measured by the absolute distance
between states and messages, ([M-S|).
BIAS,, STATE,, SUBJ = Dummy variables for the bias b, true state d, subject k
ROUND = Round number
The parametet. is the average pupil size, the coefficients give us the effect of deviating
from reporting the true state (deceiving more) urdiéerent bias levels, the coefficierfig, andfss

give us the pure effects of different biases bafre¢ to b=2) and states (relative to S=3) which

32 Note that we are aggregating 100 observationslimtata point when averaging for each 400 millisesointerval.

% Rounds with very short response time are discaifdbé corresponding PUPJcannot be calculated.

3 Pupil sizes are measured by area, in relativestermbsolute pixel counts have little meaning siitcearies by
camera positions, contrast cutoffs, etc., whichetdepon individual calibrations. Hence, the eydteacscales it to a
pupil size measurement between 800-2000. Herenammalize all observations by the average pupi¢ if each
subject throughout the entire experiment, and pitesléresults in percentage terms. (To avoid pidébias created by
eyetracker adjustments, all between-round adjudtretages were excluded when performing this nozatdin.)
Therefore, 100 means 100 percent of an individulbjext’'s typical pupil size.
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might influence dilation, coefficientsy capture individual differences, ang; ,yx2 capture
(individual) linear and quadratic learning effects.

Look first at the coefficients on the amount otelation in Table 7, interacted with bias
(denoted3s, where b is the bias parameter). In the displag bieatment, right before the decision
is made (-0.4 seconds to 0 seconds, where 0 se@®rle decision time), the coefficient on the
amount of deception is 3.28 percent higher whendwdl3.04 percent when b=2. These effects are
significant in all 400 millisecond intervals from2@0 milliseconds before the decision, to 800
milliseconds after the decision. Sending more pidoe messages is therefore correlated with pupil
dilation when b=1 or b=2. In the hidden bias tneztt, the pupil dilation difference is smaller and
less significant, and mostly only occurs just aftex decision time (0.0-.8 sec). Nevertheless, the
coefficients on the amount of deception is stijnsiicantly at 1.83-2.64 percent immediately after
the decision is made (for b=1 and b=2), and malgiséggnificant at 1.47-2.06 percent just before
the decision for b=2> It is likely that the cognitive demands of thelden bias treatment might
raise the baseline pupil dilation even for truthinig, making additional dilation hard to detect.

Note that the bias condition by itself does not egate pupil dilation (nearly all the
coefficientsP,s are insignificant and are omitted from Table 7hafis, it is not bias, per se, which
creates arousal or cognitive difficulty; it is sergimore deceptive messages in the bias conditions.
Furthermore, these basic patterns are reproducexh we divided the display bias treatment
samples into two halves and compare them, whickiggosome assurance of statistical reliability

even though the sample size is modst.

% The reduced predictive power in the hidden-biaatment could be construed as consistent with tumitive
difficulty story because hiding the bias parameted adding noise to the payoffs make the hiddes toég@mtment more
difficult in general than the displayed bias treattn This enhanced difficulty could increase thedtiae pupil dilation
of truth-telling in all conditions, which makes aagtditional dilation from deception harder to détec

% Because we measured eyetracking and pupil dildtimm ten senders in the hidden bias treatmens itseful to
check how reliable these results are in two subesrgf five subjects each. The 400-msec intervaisf+0.4 to +0.8
secs after decision time gives the highe®s Bo we compare those. TRg, coefficients across bias levels (b=0, 1, 2)
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V. Lie-detection and Prediction

As noted, one goal of measuring eyetracking ise® whether these behavioral measures
enable us to improve upon predictions of theonhisTsection reports whether using eyetracking
data helps predict deception and uncover the uyidgrtrue states. From a practical point of view,
it is useful to whether we can detect deceptiorioutne point that we may uncover the underlying
truth states. Here, we ask how well receiversadq@uédict the true state usiogly messages and
lookup patterns (and how much they could earn usinge predictions). That is, we pretend we
don’t know the true state for predictive purpodesecast it from observables, then use knowledge
of the true state to evaluate predictive accurasie focus on b=1 and b=2 since truth-telling is so
prominent when b=0 (that lie-detection is not neaeg).

In particular, for the dependent variable STAJEanging from 1 tdb, we consider an

ordered logit regression

log[Pr(STATE> j)] =6, + > (8, IMESSAGE 3,, [ROW,,; + ;, [ROW,,,,) (BIAS, +&

b=1,2
where lookups are consolidated into two integerades:
ROWkerrother= The corresponding state of the own/opponentfagw which has the longest total
lookup time of all own/opponent-payoff rows
The coefficientsp, represents the information about the state coedaim the messagpap

represents the effects of the “most viewed row”ook’s own payoffs (i.e., the state number

are the most important. They are 6.35* 2.40, Zdtlthe first five subjects and 6.11**, 4.14** argd00*** for the

second five subjects. For other intervals, asiptied power (R) falls the reliability across the two subsamplalsf
but the coefficient signs are almost always theesamthe two subsamples and magnitudes are typicadisonably
close.
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corresponding to the row that is viewed for thegkest time), andss, represents the effects of the
“most viewed row” of the opponent’s payoffs. Theare state-specific constants.

In order to evaluate how well these specificationsld predict new data, out-of-sample
estimation is used. Each observation is used prithvability 2/3 to estimate the model, then the
model forecast on the remaining 1/3 of the datar dach holdout observation, the estimated logit
probabilities are used to calculate the expeciate stvhich is rounded to the nearest integer toemak
a precise single-state prediction. This partiaingstion-prediction procedure is performed 100
times. Averag@s and (bootstrap) standard errors across the 5adnpdings are reported in Table 8.

The significance of}1, in Table 8 indicates that the messages are inforenabout the
states (as analyses reported above establishd. smaller the message, the smaller is the true
state, even though standard game theory prediatditthe information should be transmitted in the
messagef, should be zero when b=2).

The lookup data are significantly correlated vatates as well. The coefficierfig, on the
most-viewedown row variables, are positive and significant fotthbthe display bias and hidden
bias treatments. The coefficiens,, on the most-viewedther row variables, are positive and
significant in the hidden bias treatment. In thepthy bias treatment, they are smaller and only
significant when b=2f,).

The key point is that lookup data improve preditdiiyb even when controlling for the
message.For example, if the message is 4, but the lootata indicate the subject was looking
most often at the payoffs in row correspondingtates2, then the model could predict that the true
state is 2, not 4. Note that this sort of predititan only come from a setting in which attenien

measured.
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The error rates in predicting states in the haldample are only substantial (greater than 40
percent) in the display bias treatment when bias b=2 (59.7 percent). (Keep in mind that the
error rates in equilibrium would be 60 percent 83dpercent.) Most of the wrong predictions from
the logit model (70 percent) only miss the stateohg. The model accuracy also is substantially
better than the actual performance of the recesubjects in our experiments: Subjects “missed”
(A#S) 56.2 and 58.5 percent of the time for the digmlabias and hidden bias treatments, when
b=1, and missed 70.9 and 77.9 percent for b=2.

An interesting calculation is how much these prigains might add to the receiver payoffs
(cf. “economic value” in Camerer et al., 2004).r Bases b=1 and b=2, the average actual payoffs
earned by receivers who faced eyetracked senders 984 and 86.2 for the displayed bias
treatment and 87.5 and 80.9 for the hidden bias dnehe displayed bias treatment, if receivers
had based their predictions on the models estimatdable 8, and chose the same action as the
predicted state (for the holdout sample), theireexed payoffs would be 100.7 for b=1 and 91.8 for
b=2, which is a modest economic value of 6-8 perterin the hidden bias treatment, the expected
payoffs (based on estimates in Table 8) would He7Lébr b=1 and 98.0 for b=2, which is a large
economic value of 15-21 percent. In fact, thes@fia are already close to what subjects actually
earn when there is no bias (101.27)In a sense, these economic value statistics sudlgat it
could be possible to almost erase the cost toveredf not knowing the true state but looking at
attention along with messages.

An important caveat to these analyses is that waatoknow what would happen if the

senders knew that their pupil dilation and lookwpsre being used to predict the true state

37 Of course, this calculation assumes the receiventd measures lookups and pupil dilation withariders altering
their lookup patterns because they knew they wemagbwatched and studied. Whether such techniqciesilyy add
value is beyond the scope of this paper.
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(overriding, perhaps, their messages). Our intuiti® that senders would try to signal-jam by
looking at the payoffs corresponding to their mgssanore often (a kind of faked sincerity), but it
is possible that excessive pupil dilation or moetaded lookup patterns would reveal that they are
doing so. Putting senders under time pressure natgat make it difficult for them use such a

deliberately misleading strategy. In any case, sxgeriments could be easily done.

V. Conclusion

This paper reports experiments on sender-recgaares with an incentive gap between
senders and receivers (such as managers or seamdlysts painting a rosy picture about a
corporation’s earnings prospects). Senders obsestate S, an integer 1-5, and choose a message
M. Receivers observe M (but not S) and choosectinreA. The sender prefers that the receiver
choose an action A=S+b, which is b units highenttize true state, where b=0 (truth-telling is
optimal), or b=1 or b=2. But receivers know theqfé structure, so they should be suspicious of
inflated messages M.

Our experimental results show “overcommunicatiomiessages are more informative of
the state than they should be, in equilibrium thasult is consistent with a level-k model of
communication anchored at truth-telling. To explothe cognitive foundations of
overcommunication, we used eyetracking to recordtyplayoffs the sender subjects are looking at,
and how widely their pupils dilate (expand) whereythsend messages. The sender-receiver
paradigm also expands the quality of researchesddiection in general: Deception in these games

is spontaneous and voluntary (most studies useigtset lying); and both players have a clear and

% 3Such gains in the hidden bias treatment are nqrising since subjects are forced to look at thgoff table to
discover the bias parameter, and they focus digptiopally on the “true state” row along the way.
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measurable financial incentive to deceive, anddtea deception (most studies lack one or both
types of incentives).

The lookup data show that senders look dispropaatly at the payoffs corresponding to the
true state, so they do not appear to be thinkimgtegically enough to be “in other’'s shoes.”
Senders’ pupils also dilate when they send deceptiessages (¥6), and dilate more when the
deception |M-S| is larger in magnitude. Togetlieese data are consistent with the underlying
assumptions of the level-k model, and that figuroug how much to deceive another player is
cognitively difficult. Guilt does not appear to bee sole driver of overcommunication, because
senders who look at receiver payoffs more ofterats@ more deceptive.

When modifying the design to counter memory ambated game effects (the hidden bias
condition), the behavioral results are robust. thermore, combining sender messages and lookup
patterns, one can predict the true state abouetascoften as predicted by equilibrium, and ineeas
receiver payoffs up to 16-21 percent compared tat\ghbjects actually earn in the experiment.

There are many directions for future researchthWithis paradigm, eyetracking receivers
would be useful for establishing their degree aditegic sophistication in making inferences from
messages.

More generally, economic theories often talk vagadout the costs of decision making or
difficulty of tradeoffs. Pupil dilation gives us enway to start measuring these costs. Many
economic models also specify a cognitive algorittmat maps acquired information into choices
(e.g, dynamic programming applications which reguwoking ahead). The idea of allocating
attention has itself gotten attention in econonfizslla Vigna, 2007) and in macroeconomic studies
of “rational inattention” (e.g., Christopher SinZ)06). In both cases, measuring attention directly

through eyetracking could improve tests of theomgsch make predictions about both attention
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and choice, and how they interact. Given the rig\alusing these two methods in studying games,
the results should be considered exploratory amglgi show that such studies can be done and can
yield surprises (e.qg., the predictive power of lop& and pupil dilation).

In the realm of deception, two obvious questioos fiiture research are: Why are there
substantial individual differences in the capacitywillingness to deceive others for a benefit?dAn
whether experience can teach people to be bettcaiption, and at detecting deception. Both are
important for extrapolating these results to dormam which there is self-selection and possibly
large effects of experience (e.g., used-car salg®litics). In other domains of economic interest
the combination of eyetracking and pupil dilatiauld be used to study any situation in which the
search for information and cognitive difficulty abeth useful to measure, such as “directed
cognition” (Gabaix et al., 2006), perceptions ofedising and resulting choices, and attention to

trading screens with multiple markets (e.g., witisgible arbitrage relationships).
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Table 1: Behavior Predictions of the Level-k Model

Sender Message (condition on State) Receiver A¢tondition on Message)
State 1 2 3 4 5 Message 1 2 3 4
b=0

(63}

LO/Eq Sender 1 2 3 4 LO/Eq Receiver 1 2 3 4

b=1
LO Sender 1 2 3 4 5 LO Receiver 1 2 3 4
L1 Sender 2 4 5 5 L1 Receiver 1 1 2 3

L2 Receiver 1 1 1 2

A W
ol
ol
a1

L2 Sender 3

Eq Sender 4 5 5 5 5 Eq Receiver 1 1 1 1

b=2
LO Sender 1 2 3 4 5 LO Receiver 1 2 3 4
L1 Sender 3 4 5 5 5 L1 Receiver 1 1 1 2
L2 Sender 4 5 5 5 5 L2 Receiver 1 1 1 1

Eq Sender 5 5 5 5 5 Eq Receiver 1 1 1 1

w A~ o

Note: LO senders are truthful and LO receivers begtond to LO senders by following the messadesdnders best
respond to LO receivers, while L1 receivers bespoad to L1 senders, and so on. Note that whendas2to
discreteness both L2 and Eq(=L3) senders bestmegpd_1 receivers.
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Table 2: Information Transmission: Correlationsaestn states S, messages M, and actions A

Bias Treatment r(s, M) r(M, A) (s, A) Predicte&rA)
Displayed .99 1.00 .99

0 . Eyetracked .97} .90 .86 1.00
ridden Open Box .94 93 .94} 92 .88 } 86
Displayed .73 74 72

1 _ Eyetracked .6 73 .53 .65
ridden Open box .5j} 64 .61} & .35 } A9
Displayed .63 .57 .50

2 . Eyetracked .4 .52 .34 .00
ridden Open box .2} 34 .63} 58 .28 } 32

Note: In the hidden bias treatment, some sendgesirvements were recorded (“eyetracked”) and stivere not
(“open box”). This comparison provides a usefut tdsvhether obtrusively tracking a subject’s eyations affects
their behavior.

Table 3: Sender and Receiver's Payoffs

Bias  Treatment $(std) (combined) wl(std) (combined) Predgystd)
Displayed Bias 109.14 (4.07) 109.14 (4.0
0  Eyetracked 101.13 (18.63 lop3p 10085 (19.28)} lopop  110.00(0.00)
Open Box 101.89 (14.89) (17-28) 10207 (15.23) (17.69)
Displayed Bias 93. 35 (20.75) 94.01 (19.86)
1 Eyetracked 71.81 (39.56} - 87.88 (28.6? 56,88 91.4030).
OpenBox  75.44(35.115  37-46) g4 44 (2562 (27.59)
Displayed Bias 41.52 (49.98) 85.52 (25.60)
2 Eyetracked 43.39 (52.17} 43.31 80.78 (27.1? 80 55 80.807@&0.
OpenBox 44215337y  ©279) g9 21 (20.11) (27.57)

Note:?*Payoffs are exactly the same for senders and msedue to the symmetry of the payoffs when b=0.
Payoffs are not exactly the same due to the rantiis® added and certain groups excluded.
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Table 4: Level-k Classification Results

Part (a): Display Bias

Session ID  logL k Exact lambda

-36.33 LO 0.71  0.06
-51.47 LO 0.64  0.00
-33.01 LO 0.78 0.03
-19.81 L1 0.82  0.49
3893 SOPH 076 0.04
-45.05 Eq 0.69  0.05
-34.89 LO 0.80 0.00
-27.36 L2 0.84 0.04
-31.80 L1 0.80 0.04

=

© 00 N o 0ok~ N
© 00 N o 0ok~ WD

10 10 -24.30 L1 0.84 048
11 11 -22.35 L2 0.87 0.45
12 12 -31.07 L2 0.73 1.00

Part (b): Hidden Bias

Session ID  log L k Exact lambda Type

1 1 -46.23 SOPH 0.64 0.06 eyetracked
1 2 -25.99 L1 0.87 0.00 eyetracked
1 3 -15.98 L2 0.91 0.44  open box

2 1 -37.32 L1 0.60 0.52 eyetracked
2 2 -37.34 Eq 0.73 0.52 open box (eyetracked todd@0)
2 3 -25.70 SOPH 0.83 0.07  open box
3 1 -68.84 n/a 0.13 0.01 eyetracked
3 2 -17.71 SOPH 0.89 0.12 eyetracked
3 3 -54.73 Eq 0.60 0.03 open box

4 1 -50.86 L1 0.51 0.04 eyetracked
4 3 -25.22 Eq 0.82 0.48 open box

5 1 -22.26 L1 0.89 0.02 eyetracked
5 2 -35.77 L2 0.78 0.03 eyetracked
5 3 -25.17 Eq 0.87 0.04 open box

6 1 -16.27 L2 091 0.43 eyetracked
6 2 -42.02 SOPH 0.62 0.13 eyetracked
6 3 -52.17 LO 0.62 0.01 open box
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Table 5: Average Sender Lookup Times (in secontt®)sa Game Parameters

Response Time Sender-to-
Treatment Bias ; ; State Bias Sender  Receiver Receiver
b PenOdS PenOdS Payoffs Payoffs Ratio
1-15 31-45
0 5.42 2.39 065 041 0.73 0.27 2.70
Displayed
1 7.92 5.44 1.47 0.99 2.29 1.05 2.18
Bias
2 9.73 8.12 1.72 152 3.03 1.50 2.02
all 8.07 5.25 1.34 1.02 2.14 1.00 2.14
0 9.78 7.24 0.83 - 2.93 1.71 1.71
Hidden
1 11.77 8.76 0.81 - 3.80 2.66 1.43
Bias
2 16.84 8.99 0.91 - 4.67 3.26 1.43
all 13.47 8.52 0.86 - 3.99 2.72 1.47

Table 6: Average Lookup Time per Row DependingrenState

. True State Other State True-to-Other
Treatment Biasb

Rows Rows Ratio

0 0.54 0.11 491
Displayed 1 2.06 0.32 6.44
Bias 2 2.24 0.57 4.28
overall 1.71 0.36 4.75

0 2.76 0.47 5.87
Hidden 1 3.88 0.64 6.06
Bias 2 4.29 0.91 4.71
overall 3.83 0.72 5.32
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Table 7: Pupil Size Regressions for 400 msec laterv

-1.2~ -0.8~ -0.4~ 0.0~ 0.4~
Y PUPIL
-0.8sec -0.4sec 0.0sec 0.4sec 0.8sec
Displayed Bias
constant a 99.59 99.78 104.62 111.81 109.95
(2.45) (2.41) (2.19) (1.84) (2.07)
LIE_SIZE * BIAS, B10 1.20 6.41 3.92 -3.91 0.58
interactions (3.21) (6.38) (3.06) (2.76) (7.36)

B11 2.79*% 3.40%  3.28%  455%*  420%
(1.19) (1.17) (0.97) (0.86) (0.73)

Bl 3.40%% 3 71%%  304%%  200% 328
(0.99) (0.98) (0.84) (0.87) (0.90)

N 499 497 499 508 503
r 224.54 337.22 500.93 785.32 631.21

R? 0.271 0.346 0.455 0.539 0.557
Hidden Bias
constant o 107.27 108.03 106.19 109.56 108.67
(2.81) (2.55) (2.57) (2.05) (2.16)
LIE_SIZE * BIAS, B10 2.83 2.36 3.07 5.35** 5.57*
interactions (1.85) (2.22) (2.46) (1.16) (2.19)
B11 -1.02 -0.46 -0.36 2.16" 2.64*
(1.26) (1.31) (1.28) (1.21) (1.15)
B12 2.06* 1.52» 1.47* 1.83* 2.00**
(0.86) (0.79) (0.75) (0.75) (0.74)
N 414 415 414 415 414

¥ 323.86 235.43 194.40 258.49 352.49
R? 0.291 0.299 0.263 0.365 0.438

Note: Robust standard error in parentheses; t{f-eatues lower than ~10 percent, *5 percent, **etqent, and
*** (.1 percent. (Dummies for biases, states, wdtlial subjects and individual learning trendsiactuded in the
regression, but results are omitted.)
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Table 8: Predicting True States (Resampling 10@4gings. e. in parentheses)

X Display Bias Hidden Bias
MESSAGE *BIAS = 1 B11 0.64* (0.22) 0.46** (0.12)
MESSAGE * BIAS = 2 B12 0.91** (0.23) 0.42** (0.09)

ROW e * BIAS=1 B21 0.98** (0.21) 1.07** (0.24)
ROW e * BIAS=2 B22 1.00** (0.27) 1.72** (0.20)
ROW other* BIAS=1 Ba1 0.25 (0.16) 1.27** (0.22)
ROW gther* BIAS=2 B32 0.39* (0.17) 0.44** (0.15)
total observations N 208 357

N used in estimation 139.3 238.3
N used to predict 68.7 118.7

Actual Hold-out Actual Hold-out

Data Sample Data Sample

Percent of wrong prediction (b=1) 56.2 29.2 58.5 928

Percent of errors of size (1,2,3+) (b=1) (80, 15,5 (74, 19, 7) (61, 28, 11) (79, 19, 2)
Average predicted payoff (b=1) 93.4 (22.3) 100.7*(2.4) 87.5(28.8) 101.7** (.1

Percent of wrong prediction (b=2) 70.9 58.7 77.9 .937
Percent of errors of size (1,2,3+) (b=2) (67, 26,7 (73, 22,5) (60, 30, 10) (72, 24, 4)

Average predicted payoff (b=2) 86.2 (23.8) 91.8* (3.4) 80.9 (26.9) 98.0** (2.2)

Note: * and ** Denotes p<0.05 and p<0.001 (t-test)
& Observation with less than 0.5 seconds lookup tintewithout the needed pupil size measures aladed.
® Two sample t-test conducted against the actuabffmpf receivers in the experiment who are paieéth
eyetracked senders.
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Figure 1. Raw Data Pie Charts (b=0), Hidden Bias
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igure 2: Raw Data Pie Chart (b=1), Hidden Bias
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The true states are in rows, and senders’ messaga® in columns. Each cell contains the average
action taken by the receivers and a pie chart breadown of the actions. Actions are presented
in a gray scale, ranging from white (action 1) to lack (action 5). The size of the pie chart is
proportional to the number of occurrences for the orresponding state and message.
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Figure 4: Lookup Icon Graph for b=1, Hidden Bias

Part (a): Sender Payoffs Part (b): Receiver Paffs
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Each row reports the lookup counts and time for thé'true state row” corresponding to the given true
state. The width of each box is scaled by the nurab of lookups and the height by the length of
lookups (scaled by the little “ruler” in the upper right corner). The vertical bar on the first column
icon represents the total lookup time summed acrossach row.

Figure 5: Lookup Icon Graph for b=2, Hidden Bias

Part (a): Sender Payoffs Part (b): Receiver Baffs
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Each row reports the lookup counts and time for the‘true state row” corresponding to the given true
state. The width of each box is scaled by the nurab of lookups and the height by the length of
lookups (scaled by the little “ruler” in the upper right corner). The vertical bar on the first column
icon represents the total lookup time summed acros=sach row.
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Appendix for Online Access [NOT INTENDED FOR PUBLICATION]

Appendix: Methods

Since this paper incorporates economics experimeritge laboratory, eyetracking devices,
and studies the issue of deception, we expect read® come from various backgrounds, such as
economic theory, experimental economics, psychaplogy, and lie-detection. Therefore, we
decided to create a methodology appendix to addsesss that might already be very familiar to
some readers, but not to the rest. In particidaction 1 introduces video-based eyetracking to
economists who are interested in learning abouhaust to study information acquisition, and
section 2 demonstrates the relevance of eyetrackiegonomic experiments. Section 3 provides
an argument for adding yet another paradigm (seretiver games) to study lie-detection, instead
of adopting previous tasks such as CQT, GKT, &ection 4 provides the technical details of the
equipment and software programs used in this stoidthose who are interested in replicating our

results or applying this technique in future reskar

A.l What is Eyetracking?

There are several ways to track a person’s eyage dDthe most reliable and non-invasive
way is video-based. Video-based eyetracking wbskplacing cameras in front of subject’s eyes
to capture eye images and corneal reflection o&refl sensors, and record changes up to 50-250Hz.
Using eye movement images when subjects were adiictate on certain positions on the screen, a
procedure called “calibration,” the experimenten t@ace eye fixations and saccades on the screen
and infer subject information acquisition patterndn addition to information lookups, the

eyetracker also records pupil dilation, which isretated with arousal, pain, and cognitive
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difficulty. Therefore, eyetracking provides addital data about one’s decision making process,

uncovering previously unobservable parameters.

A.ll What Does Eyetracking Tell Us About the “RealWorld”?

Since economists are used to judging theories dylywhether they predict choices
accurately, it is useful to ask what direct measnet of eye fixations and pupil dilation can add.
One possible inferential strategy from eyetrackstp separate competing theories that explain the
same behavior. Previous studies compared offetlsl@kups in three-period alternating-offer
bargaining (Camerer et al., 1993; Johnson et 8D2P and in initial responses to normal-form
games and two-person guessing games (Costa-Gonads 8001; Costa-Gomes and Crawford,
2006). In those experiments, the same choicesidmilcaused by different decision rules, such as
L1 (optimize against perceived random play) and (Dftimize against perceived random play
excluding dominated strategies) in Costa-Gomes ¢2@01), but are separated by different lookup
generated by these rul®s.These studies illustrate the potential for usiegnitive data, besides

choices, for distinguishing between competing thesoor inspiring new theof}.

%9 One potential concern of adopting eyetrackingisitiny. For example, in our experiments sendetdcthave been
more truthful simply because they were watchedleéa, we do find many LO and L1 types (seven ottvefve) in the
display bias treatment. Nevertheless, such cosadrould be dealt with empirically by comparingtegeked and open
box subjects. In our experiment, the hidden hieattent adopts random matching and contains hetracked and
open boxed subjects. Overall type classificat@sults are similar to Cai and Wang (2006). AltHotlie sub-samples
of eyetracked and open box subjects do show soteeesiing differences, the average level of stiatdgnking is
comparable: None of the eyetracked subjects wefEd,dut there were many SOPH; none of the opensbisjects
were L1, but the only LO subject was an open bokis results in lower correlation between state ma$sage for the
open box subjects, but there is still little diface in payoffs. Hence, we conclude that thereistriking difference
between the two, though the sample size is small.

0 For example, in the three-stage bargaining gam@amfierer et al. (1993) and Johnson et al. (20q®niag offers
typically fell between an equal split of the fimgriod surplus and the subgame perfect equilibriprediction
(assuming self-interest). These offers could hesed by limited strategic thinking (i.e., playeis bt always look
ahead to the second and third round payoffs ofjtree), or by computing an equilibrium by lookingeadl, adjusting
for fairness concerns of other players. The failto look at payoffs in future periods showed tiet deviation of
offers from equilibrium was (at least partly) duelimited strategic thinking, rather than entirelye to equilibrium
adjustment for fairness (unless “fairness” mearisanall responding to advantages conferred bystiaegic structure).
Furthermore, comparing across rounds, when plagerbok ahead at future round payoffs their resgltoffer are
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Ultimately, the goal is to open up the black boxhaiman brain, and model the decision
process of human behavior, which is similar to wieg been done to the firm. Instead of dwelling
on the neoclassical theory of the firm, which isrehe a production function, modern economics
has opened up the black box of the firm, and eijylimmodeled its internal structure, such as the
command hierarchy, principle-agent issues, and f@a@duction. Though there is still much to be
done before we come close to what has been achievéadustrial organization, eyetracking
provides a window to the soul and gives us a hirthe decision process inside the brain. Just as
we may infer a factory’s technology level by obsegvits inputs and wastes, we may also infer a
person’s thought process by observing the inforomatie or she acquires (inputs) and how hard

does he think (indexed by pupillary response).

A.lll What Does Economics Have to Offer Regarding lie-detection?

This study introduces an economic framework thatmissing in the many previous
psychophysical studies on deception and lie detectiAn advantage of the strategic information
transmission game for studying deception is thatey¢gheory makes equilibrium predictions about
how much informed agents will exaggerate what tkreyw, when they know that other agents are
fully-informed about the game’s structure and tieentives to exaggerate. Even when equilibrium
predictions fail, there are various behavioral miedeuch as level-k reasoning and quantal response

equilibrium, which provide precise predictions tha¢ testable in the lab. And while in most other

closer to the self-interested equilibrium prediatisee Johnson and Camerer, 2004). Thus, the laddkiapcan actually
be used to predict choices, to some degree.

“1 Another example comes from the accounting litegatdames E. Hunton and McEwen (1997) asked asalyster
hypothetical incentive schemes to make earningsctst based on real firm data, and investigatddr&athat affect the
accuracy of these forecasts. Using an eye-moveownputer technology (Integrated Retinal Imagingt&m, IRIS),
they find that analysts who employ a “directiveoimhation search strategy” make more accurate fetechoth in the
lab and in the field, even after controlling foraye of experience. This indicates that eyetrackiry provide an
alternative measure of experience or expertiseishadt simply captured by seniority. Had they abserved the eye
movements, they could not have measured the diieren information search which is linked to aceyra
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deception studie€ subjects are instructed to lie or give weak oorjocontrolled incentive$®
subjects in experiments like ours choose voluntavihether to deceive others or not (see also John
Dickhaut et al., 1995, Andreas Blume et al., 198®)1 and Cai and Wang, 2008)Senders and

receivers also have clear measurable economictimesrio deceive and to detect decepfion.

A.lIV Technological Details

Eyetracking data and button responses were redandiang the mobile Eyelink Il head-
mounted eyetracking system (SR Research, Osgoodari@). Eyetracking data were recorded at
250 Hz. The mobile Eyelink Il is a pair of tiny caras mounted on a lightweight rack facing
toward the subjects’ eyes, and supported by coafftethead straps. Subjects can move their heads
and a period of calibration adjusts for head movante infer accurately where the subject is

looking. New nine-point calibrations and validagowere performed prior to the start of each

“2 For a survey of studies on (skin-conductance) gralyh, see Theodore R. Bashore and Paul E. Rapg)(1%or lie-
detection studies in psychology, see the revievRaifert E. Kraut (1980) and Aldert Vrij (2000). rocomprehensive
discussion of different cues used to detect lies, Bella M. DePaulo et al. (2003). For individd#ferences in lie-
detection (Secret Service, CIA and sheriffs dodrgtsee Paul Ekman and Maureen O’Sullivan (198d)Eekman et al.
(1999). More recently studies in neuroscience guéimctional magnetic resonance imaging (fMRI) itt# Sean A.
Spence et al. (2001), D. D. Langleben et al. (2@02) F. Andrew Kozel et al. (2004).

“30One exception is Samantha Mann et al. (2004) whiskd footage of real world suspect interrogatimrest lie-
detecting abilities of ordinary police. However|od of experimental control is lost in this setfin One interesting
findings in this study is that counter to conventibwisdom, the more subjects relied on stereofymiues such as gaze
aversion to detect lies, thessaccurate they were.

*|n fact, when the senders were asked after therampnt whether they considered sending a numfiffareint from
the true state deception, 8 of the subjects sasd while another 3 said no, but gave excuses ssi¢it's part of the
game” or “the other player knows my preferenceeddhce.” Only 1 subject said no without any exatem. These
debriefing results also suggest that guilt hasgaldittle role in the experiment.

> Most lie-detection studies have three drawbacks:They do not use naturally-occurring lies (beeaitsis then
difficult to know whether people are actually lyingnot). Instead, most studies create artifiiéd by giving subjects
true and false statements (or creating a “crimaage”) and instructing them to either lie or t#le truth, sometimes to
fool a lie-detecting algorithm or subject. Howevarstructed deception can be different than n#luoecurring
voluntary deception, and the ability to detectrinsted deception might be different than detectiolgintary deception.
(2) The incentives to deceive in these studiestygrieally weak or poorly controlled (e.g., in Spenet al. (2001) all
subjects were told that they successfully fooleditivestigators who tried to detect them; in MarkF@nk and Ekman
(1997), subjects were threatened with “sitting orcadd, metal chair inside a cramped, darkened rdabeled
ominously XXX, where they would have to endure ahgve from 10 to 40 randomly sequenced, 110-desibelling
blasts of white noise over the course of 1 hr” bawer actually enforcing it.). (3) Subjects ar@itglly not
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experiment in a participant’s session. Accuracthim validations typically was better than 0.5° of
visual angle. Experiments were run under Windowss (Klicrosoft, Inc.) in Matlab (Mathworks,
Inc., Natick, MA) using the Psychophysics Toolb®ayid H. Brainard, 1997; Denis G. Pelli, 1997)
and the Eyelink Toolbox (Frans W. Cornelissen gt24102).

Eyetracking data were analyzed for fixatiorssng the Eyelink Data Viewer (SR Research,
Hamilton, Ontario). In discriminating fixations,ewset saccade velocity, acceleration, and motion
thresholds to 30%sec, 9500°%/seand 0.15°, respectively. Regions of interestIgr@r the boxes
subject look up, were drawn on each task imagegubi@ drawing functions within the Data Viewer.
Measures of gaze included Fixation Number (i.ee,tdtal number of fixations within an ROI) and
Fractional Dwell Time (i.e., the time during a giveund spent fixating a given ROI divided by the
total time between image onset and response). ©Oulge fixations beginning between 50ms
following the onset of a task image and offsethef task image were considered for analysis.

All task images were presented on a CRT moi(it6.9 in x 11.9 in) operating at 85 or 100 Hz
vertical refresh rate with a resolution of 1600gbéxx 1200 pixels, and at an eye-to-screen distance

of approximately 24 inches, thus subtending ~36ekegjof visual angle.
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Appendix: Experiment Instructions

The experiment you are participating in consists of 1 session, having 45 rounds. At the end of
the last session, you will be asked to fill out a questionnaire and paid the total amount you
have accumulated during the course of the sessions in addition to a $5 show-up fee.
Everybody will be paid in private after showing the record sheet. You are under no obligation
to tell others how much you earned.

During the experiment all the earnings are denominated in FRANCS. Your dollar earnings are
determined by the FRANC/$ exchange rate: 200 FRANCS = $1.

In each round, the computer program generates a secret number that is randomly drawn from
the set {1,2,3,4,5}. The computer will display this secret humber on member A’s screen.
After receiving the number, member A will send the message “The number I received is XX,”
to member B by staring at box XX. Hearing the message from member A, member B will then
choose an action. In particular, member B can choose action 1, 2, 3, 4, or 5, using the game
pad. Earnings of both members depend on the secret nhumber and member B’s action.

Member B’s earnings is higher when member B’s action is closer to the secret number, while
member A’s earnings is higher when member B’s action is closer to the secret number plus
the preference difference. The preference difference is either 0, 1 or 2, with equal chance,
and will also be displayed and announced at the beginning of each round.

For example, if the preference difference is 2 and the secret number is 3, member B’s earnings
are higher if his or her action is closer to 3. However, member A’s earnings is higher when
member B’s action is closer to 3 + 2 = 5. The earning tables are provided to you for
convenience.

To summarize, in each round, the computer will display the preference difference and the
secret number on member A’s screen. Then, member A stares at a box (on the right)
containing the desired message. Member B will hear the preference difference and the
message “The number I received is XX,” and then choose an action. The secret number is
revealed after this choice, and earnings are determined accordingly.

Practice Session: 3 Rounds

Session 1: 45 Rounds

Member B: Please make sure you record the earnings in your record sheet. Your payments
will be rounded up. Thank you for your participation.
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Appendix: Supplemental Figures and Tables
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Figure S1: Sender Screen for b

Trial O of 45

The Number You Recerved Is
4

Preference Difference Is
1

Your carnings are in the dark blue boxes;

Eammgs of the other participant arc in bright blue boxes.
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Figure S2: Raw Data Pie Charts (b=0), Display Bias Figure S3: Raw Data Pie Chart (b=1), Display Bias
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Figure S4: Raw Data Pie Chart (b=2), Display Bias
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The true states are in rows, and senders’ messaga® in columns. Each cell contains the average
action taken by the receivers and a pie chart breadown of the actions. Actions are presented
in a gray scale, ranging from white (action 1) to lkack (action 5). The size of the pie chart is
proportional to the number of occurrences for the orresponding state and message.
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Figure S5: Icon graph of lookups (rectangle widthjand looking time (shaded area) for b=0
Part (a): Display Bias Part (b): Hidden Bias
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Figure S6: Lookup Icon Graph for b=1, Display Bias
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Figure S7: Lookup Icon Graph for b=2, Display Bias

Part (a): Sender Payoffs Part (b): Receiver Baffs
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Each row reports the lookup counts and time for thé'true state row” corresponding to the given true
state. The width of each box is scaled by the nurab of lookups and the height by the length of
lookups (scaled by the little “ruler” in the upper right corner). The vertical bar on the first column
icon represents the total lookup time summed acrossach row.
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Table S1A: Average response time change for diffen¢ biases, Display Bias

Average for Average for Average for
Bias N N N
first 15 rounds middle 15 rounds last 15 rounds
0 38 5.42 a7 2.91 55 2.39
1 73 7.92 60 5.44 59 5.44
2 67 9.73 68 8.96 51 8.12
overall 178 8.07 175 6.13 165 5.25

* The numbers of observations are slightly diffédeacause we exclude 10 rounds where subjectoohasktthe
keyboard to make their decision. Also, subjech&d severe pain and the experimenter was forcstpothe
experiment at the end of round 33.

Note: Since the bias was randomly determined eawhd, and subject #4 stopped at round 33 (duedessxpain
wearing the eyetracker), numbers of observatioasat equal. Dropping subject #4 does not chamgedsults.

Table S1B: Average response time change for diffemébiases, Hidden Bias

Average for Average for Average for
Bias N N N
first 15 rounds middle 15 rounds last 15 rounds
0 30 9.78 24 5.54 29 7.24
1 56 11.77 58 10.78 59 8.76
2 61 16.84 65 10.23 49 8.99
overall 147 13.47 147 9.68 137 8.52

* The numbers of observations are slightly difféaleacause we exclude 12 rounds where subjectohagktthe
keyboard to make their decision. Also, subjech&8 calibration issues and the experimenter waedbto stop
eyetracking at the end of round 40.

Note: Since the bias was randomly determined eaahd; and subject #4 stopped at round 40 wearmmg th
eyetracker), numbers of observations are not equal.
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Table S2A: Learning — Actual Information Transnssi

Display Bias

BIAS Rounds  Corr(S, M) Corr(M, A) Corr(S, A) Pretiid Corr(S, A)

1-15 0.880 0.833 0.732

0 16-30 0.976 0.949 0.925 1.000
31-45 0.937 0.942 0.919
1-15 0.620 0.730 0.477

1 16-30 0.685 0.724 0.577 0.645
31-45 0.598 0.713 0.415
1-15 0.384 0.584 0.372

2 16-30 0.327 0.526 0.306 0.000
31-45 0.279 0.643 0.291

Hidden Bias

BIAS Rounds  Corr(S, M) Corr(M, A) Corr(S, A) Pretid Corr(S, A)

1-15 0.887 0.816 0.716

0 16-30 0.941 0.951 0.885 1.000
31-45 0.888 0.944 0.866
1-15 0.602 0.730 0.436

1 16-30 0.660 0.727 0.561 0.645
31-45 0.555 0.714 0.393
1-15 0.380 0.592 0.372

2 16-30 0.347 0.540 0.313 0.000
31-45 0.232 0.636 0.288
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Table S2B: Learning Sender and Receiver’'s Payoffs

Display Bias
BIAS Rounds g (std) W (std) Predictedp(std)
1-15 96.36 (23.47) 96.48 (24.37)
0 16-30 104.63 (11.65) 104.78 (12.01) 110.00 (0.00)
31-45 103.50 (12.46) 103.19 (12.18)
1-15 79.38 (31.83) 87.04 (26.78)
1 16-30 69.19 (40.15) 87.98 (28.94) 91.40 (1P.39
31-45 71.83 (39.05) 85.52 (27.09)
1-15 46.06 (50.91) 80.63 (25.93)
2 16-30 46.74 (51.11) 81.20 (27.63) 80.80 (20.76
31-45 35.87 (55.73) 79.70 (29.65)
Hidden Bias
BIAS Rounds g (std) W (std) Predicted p(std)
1-15 95.38 (23.56) 95.72 (24.15)
0 16-30 102.40 (15.18) 102.52 (15.53) 110.00 (0.00
31-45 102.00 (16.89) 101.69 (17.30)
1-15 78.76 (35.63) 85.88 (28.92)
1 16-30 69.18 (39.40) 87.45 (28.61) 91.40 (19.39
31-45 71.40 (38.82) 84.73 (26.87)
1-15 46.76 (49.84) 81.06 (26.36)
2 16-30 46.75 (50.19) 81.81 (27.15) 80.80 (20.76
31-45 36.22 (55.94) 79.29 (29.10)
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Table S3: Average Sender Fixation Counts and Lodkope across Game Parameters

Res- State Bias Sender Payoffs =~ Receiver Payoffs
Treat- Biasb pPonse
ment time Fixation Lookup Fixation Lookup Fixation Lookup Fixation Lookup

(sec) (Coum) (sec) (count) (sec) (count) (sec) (count) (sec.)

0 3.99 2.6 0.65 2.1 0.41 3.0 0.73 1.4 0.27
Displayed 1 6.86 5.0 1.47 3.9 0.99 8.1 2.29 3.9 1.05

Bias 2 9.68 6.2 1.72 5.5 1.52 10.6 3.03 5.4 1.50

overall 7.00 4.8 1.34 4.0 1.02 7.6 2.14 3.7 1.00

0 7.65 3.0 0.83 - - 12.0 2.93 7.5 1.71

Hidden 1 10.95 3.1 0.81 - - 14.2 3.80 10.7 2.66
Bias 2 12.91 3.4 0.91 - - 17.5 4.67 12.4 3.26
overall 11.12 3.2 0.86 - - 15.1 3.99 10.8 2.72

Table S4: Average Fixation Counts and Lookup TiraeRow

True State Rows Other Rows

Treatment Bias b Fixation Countd.ookup Time Fixation Counts Lookup Time
(countsper ro (sec. per row) (countsper rowy  (Sec. per row)

0 2.2 0.54 0.5 0.11

Displayed 1 6.8 2.06 1.3 0.32
Bias 2 7.8 2.24 2.0 0.57
overall 5.9 1.71 1.3 0.36

0 11.4 2.76 2.0 0.47

Hidden 1 14.4 3.88 2.6 0.64
Bias 2 15.7 4.29 3.6 0.91
overall 14.3 3.83 2.9 0.72
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