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Abstract

We design experiments that capture the essence of the theoretical environments stud-
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fying the state are significantly higher in two-sender games than in the control game with
one sender, in a manner consistent with the respective fully and partially revealing equi-
libria. By manipulating message/state space to control for out-of-equilibrium beliefs,
we investigate the robustness of the fully revealing equilibrium and observe significantly
lower adherence when the equilibrium requires support of “implausible beliefs.” Intro-
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1 Introduction

A defining hallmark of modern economies is the high degree of specialization that occurs in

both physical production and the more intangible domain of decision making and information

handling. Comparative advantage may not only dictate decision makers to pass the job of

gathering information to experts, but may also guide different experts to specialize in offering

advice on separate areas. When conflicts of interests are present, strategic considerations

may provide yet another reason for decision makers to consult different experts on different

issues—even when comparative advantage is not a deciding factor. For instance, a legislator

who consults an interested advisor on the potential impacts of a bill may obtain impartial

advice on some areas but not the others, seeding the need to cross-check with another advisor

who might be forthright in a different manner. In a seminal paper on multidimensional cheap

talk, Battaglini (2002) provides a formal strategic argument for otherwise equally informed

experts to specialize in giving advice on different dimensions.1

The theory of multidimensional cheap talk contrasts sharply with its unidimensional coun-

terpart. In the canonical model of Crawford and Sobel (1982), a sender transmits information

to a receiver whose uncertainty is unidimensional. The analysis renders a clear picture, which

survives modeling variations within the single-sender-single-dimension environment: unless

players’ interests are perfectly aligned, only partial information can be transmitted, the ex-

tent of which is decreasing in the sender’s bias.2 The picture changes drastically when one

more sender is introduced and the uncertainty becomes multidimensional. Battaglini (2002)

demonstrates how the receiver can fully identify the state with two biased senders providing

information on different dimensions over a multidimensional (unbounded) state space. More

strikingly, the fully revealing equilibrium survives regardless of how biased the senders are.

The different informational properties of the equilibria represent only one disparity that

the departure from the single-sender environment brings—robustness is another. With one

sender, out-of-equilibrium beliefs arise only after unused messages, which can be disregarded

without any impact on equilibrium outcomes.3 With two senders, out-of-equilibrium beliefs

can arise when the senders’ messages present inconsistent information. Unlike the case of

1Cheap-talk models have been a theoretical arena for studying the strategic interactions between experts
and decision makers. Other than the interactions between legislators and advisors (Gilligan and Krehbiel,
1989; Krishna and Morgan, 2001b), they have shed light on, for example, the interactions between stock
analysts and investors (Morgan and Stocken, 2003) and those between doctors and patients (Kőzegi, 2006).

2Such informational property of the equilibrium is invariant to, for example, the introduction of additional
round of communication (Krishna and Morgan, 2004), noise in the communication channel (Blume et al.,
2007), and the introduction of mediator (Goltsman et al., 2009; Ivanov, 2010).

3In cheap-talk games, for any equilibrium with unused messages there exists another outcome-equivalent
equilibrium in which all messages are used. Accordingly, alternative specifications of the receiver’s beliefs after
unused messages do not rule out any equilibrium outcome. See, for example, the discussion in Farrell (1993).
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unused messages, this can have robustness implications for equilibrium outcomes. Battaglini

(2002), for example, points out that while fully revealing equilibrium also exists with two

senders when the state space is unidimensional, it is not robust in that it requires the sup-

port of implausible out-of-equilibrium beliefs.4 Even though in Battaglini’s (2002) equilibrium

construction for multidimensional state space messages will never convey inconsistent infor-

mation because they are about different dimensions, Ambrus and Takahashi (2008) point out

that out-of-equilibrium beliefs can still arise if the state space is bounded: after a deviation,

the messages may point to a “state” that lies outside the state space. Intuitively, when one

investment advisor advocates strongly for stocks and another strongly for bonds, investors are

likely to question if no economic condition exists that warrants heavy investments in both.

Robust fully revealing equilibrium in multidimensional cheap talk is an issue that cannot be

sidestepped, and various authors have drawn different conclusions using different criteria.5

We design cheap-talk games that allow us to replicate Battaglini’s (2002) equilibrium con-

struction in a simple discrete environment suitable for experimental implementations. While

the plausibility of equilibria is typically evaluated on theoretical grounds in reference to certain

robustness criteria, experimental research may bring in empirical regularity as a complemen-

tary criterion for the inquiry, which may in turn inform the theory. Our simple design allows

us to control for the scenarios in which out-of-equilibrium beliefs arise. With the control at

our disposal and guided by a robustness criterion, we explore empirically the plausibility of the

fully revealing equilibrium in multidimensional cheap talk. Our main finding is that theoreti-

cally robust equilibria are also empirically plausible: they are more likely to be implemented

in the laboratory than are equilibria that require the support of implausible beliefs.

In one of our baseline games, Game T, two senders (he), Sender 1 and Sender 2, transmit

information to a receiver (she) over a 2 (horizontal dimension) × 2 (vertical dimension) state

space. The receiver chooses an action out of four after receiving the senders’ simultaneous

messages. Each sender’s message space contains four messages, which are costless and framed

in the experiment as non-binding recommendations. Senders’ and receiver’s interests are

misaligned: in each state, their ideal actions do not coincide. Yet, when each sender’s influence

on the receiver is restricted to a distinct dimension, the sender and the receiver share a common

4Analysis of unidimensional (or discrete) state space with multiple senders starts with Gilligan and Krehbiel
(1989) and Austen-Smith (1993), followed by Krishna and Morgan (2001a,b). Battaglini (2002) revisits the
problem with more complete characterizations. Ambrus and Lu (2010) and Lu (2011) further investigate
robust equilibria in such environment. For analysis of multidimensional state space with single sender, see
Levy and Razin (2007) and Chakraborty and Harbaugh (2007, 2010). For papers that introduce additional
receiver, see Farrell and Gibbons (1989) and Goltsman and Pavlov (2011).

5Under different information structures, Battaglini (2004) shows that the fully revealing equilibrium under
unbounded state space is robust to noise in senders’ observations, whereas Levy and Razin (2007) show that it is
not. Ambrus and Takahashi (2008) show that imposing the so-called “diagonal continuity” drastically reduces
the possibility of full revelation under bounded state space. Kim (2010) proposes yet another criterion—
“outcome-robustness”—and shows that no fully revealing equilibrium in Levy and Razin (2007) survives.
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ranking of the relevant actions. By prescribing Sender 1 to reveal on the horizontal dimension

and Sender 2 the vertical dimension, such preference structure is exploited in equilibrium,

allowing the receiver to fully identify the state even when interests are overall misaligned.

We implement Game T in the laboratory, comparing it to another baseline game, Game

S, where there is only one sender and equilibrium predicts partial information revelation.

Providing support to the theoretical predictions, the receivers in Game T identify the true

state and take the ideal actions significantly more often than do the receivers in Game S.

Consistently, higher receivers’ payoffs (as predicted under full revelation) are noted in Game

T. Observed message uses are also consistent with the fully revealing equilibrium: Senders 1

and Senders 2 truthfully reveal only on, respectively, the horizontal and the vertical dimension.

They babble on the other dimensions by randomizing over messages approximately uniformly.

On the receiving end, the receivers exhibit the sophistication to identify who to listen to for

which dimension, most notably when the senders’ messages are inconsistent. In Game S, as

predicted such observations only occur for the horizontal dimension.

We manipulate the sizes of the message/state space to control for the emergence of out-

of-equilibrium beliefs, resulting in two additional games, Game T′ and Game R. Game T′ is

similar to Game T but with binary message spaces. The truncated message spaces eliminate,

in the laboratory, the occurrence of inconsistent messages and, in the theory, any out-of-

equilibrium beliefs for the fully revealing equilibrium. Game R provides a discrete analog of

the restricted state space considered in Ambrus and Takahashi (2008); otherwise the same as

Game T′, it has only three states. In its fully revealing equilibrium, out-of-equilibrium beliefs

arise in a unique way: when after a deviation senders’ messages point to the “state” that is

now nonexistent. We use Battaglini’s (2002) robustness criterion, which requires the receiver’s

beliefs to be continuous transiting from equilibrium to off-equilibrium paths. We show that

the fully revealing equilibrium in Game R is not robust, while that in Game T′, given that

it is free of out-of-equilibrium beliefs, inevitably passes the test. The analysis serves as a

theoretical basis for our empirical inquiry.

The qualitative robustness properties are reflected quantitatively in our findings. In Game

R, while full revelation outcomes still occur more often than what can be attributed to chance

alone, they occur significantly less often than do those in Game T′. The receivers in Game R

never respond to out-of-equilibrium message pairs with the action that is required to support

the fully revealing equilibrium, lending empirical support to the implausibility of the non-

robust equilibrium. In addition, while the receivers are still best responding to the senders,

some of the senders use messages in ways that do not constitute best responses to the receivers’

actions. Motivated by individual subject data that suggest some senders always tell the truth

while others are best responding, we deploy a behavioral model with a positive fraction of
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non-strategically honest senders to rationalize the findings from Game R.

The experimental literature of communication games has focused on games with one sender

and one receiver.6 Our contribution on the experimental front lies in augmenting the labora-

tory environment with one more sender. In a study in political science, Minozzi and Woon

(2011) also examine games with two senders, but in a single dimensional environment where

senders’ bias is private information. Battaglini and Makarov (2011) introduce additional re-

ceiver, testing the prediction of Farrell and Gibbons (1989). A common experimental finding

from single-sender-single-receiver games is the “over-transmission of information” (e.g., Dick-

haut et al., 1995; Blume, et al., 1998, 2001; Cai and Wang, 2006; Kawagoe and Takizawa,

2009). Although not the main focus of our study, our finding from the single-sender Game S,

in which partial information is transmitted as predicted, contrasts with these prior findings.

Section 2 presents the four cheap-talk games. Section 3 formulates our experimental hy-

potheses and describes the experimental procedures. Section 4 reports and analyzes our find-

ings. Section 5 concludes. Proofs are relegated to Appendix A. Appendix B contains a sample

of (translated) experimental instructions. (Appendices C and D, not intended for publication,

contain additional analysis/tables/figures and the original instructions in Chinese.)

2 Two-Dimensional Cheap-Talk Games

2.1 The Strategic Environment

In all but one of our cheap-talk games, uncertainty is represented by a discrete state of the

world that consists of two dimensional components, each being a binary variable: (x, y) ∈
{x1, x2} × {y1, y2}.7 The common priors are that the four possible states are equally likely.

Players consist of a receiver and one or two senders. We proceed by describing the case with

two senders. After observing the state, Sender i, i = 1, 2, sends a cheap-talk message, m ∈Mi,

to the receiver.8 The senders’ messages are sent simultaneously, upon the receipt of which

the receiver takes an action a ∈ A = {a11, a21, a12, a22}. A behavioral strategy of Sender i is

σi : {x1, x2} × {y1, y2} → ∆Mi and that of the receiver is ρ : M1 ×M2 → ∆A. The receiver’s

6See Crawford (1998) for a survey of earlier studies and Sánchez-Pagés and Vorsatz (2007, 2009) for two
recent studies.

7Our design is shaped by two considerations: to create an environment as simple as possible that is
conducive to subjects’ comprehension of the problem (Binmore, 1999) and to capture the essence of Battaglini’s
(2002) equilibrium construction. The simplification necessarily entails discrepancies with Battaglini (2002).
For instance, while “dimension” in his paper refers to the dimension of a vector space (the two-dimensional
Euclidean state space), we use the term to refer to the components of our discrete state.

8Theoretically, there is no restriction on the message spaces as long as their cardinality does not constrain
the set of equilibrium outcomes. Our design covers both binary message spaces and spaces with four messages.
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beliefs function is µ : M1×M2 → ∆({x1, x2}×{y1, y2}). Payoffs are determined by state and

action. The equilibrium solution is perfect Bayesian equilibrium, where strategies are optimal

given beliefs and beliefs are derived from Bayes’ rule whenever possible.

Table 1: Preference Orders over State-Action

(x1, y1) (x2, y1) (x1, y2) (x2, y2)

Sender 1 max
%

(a12, a22) % a11 % a21 max
%

(a12, a22) % a21 % a11 max
%

(a11, a21) % a12 % a22 max
%

(a11, a21) % a22 % a12

Sender 2 max
%

(a21, a22) % a11 % a12 max
%

(a11, a12) % a21 % a22 max
%

(a21, a22) % a12 % a11 max
%

(a11, a12) % a22 % a21

Receiver a11 % a22 % a12 % a21 a21 % a12 % a22 % a11 a12 % a21 % a11 % a22 a22 % a11 % a21 % a12

Battaglini’s (2002) equilibrium construction leverages on the common interests shared be-

tween the senders and the receiver in a lower dimension, even though in a higher dimension

their interests are misaligned. There are more than one way to capture this preference struc-

ture in our setting. Table 1 presents the possible preference orders over actions in each state,

which serve as our guide for assigning payoffs for the games we experiment on. The overall

interests are misaligned: in each two-dimensional state senders’ and receiver’s ideal actions

do not coincide. For example, in state (x1, y2), Sender 1’s ideal action is either a11 or a21

[max%(a11, a21)], whereas the receiver’s is a12.
9 Yet each sender shares a common ranking of

actions with the receiver when the action choices are restricted to be in a lower, single dimen-

sion. In particular, the following is relevant for the construction of fully revealing equilibrium:

1. Sender 1 and the receiver

(a) Fixing y = y1, both prefer a11 to a21 when x = x1 and a21 to a11 when x = x2.

(b) Fixing y = y2, both prefer a12 to a22 when x = x1 and a22 to a12 when x = x2.

2. Sender 2 and the receiver

(a) Fixing x = x1, both prefer a11 to a12 when y = y1 and a12 to a11 when y = y2.

(b) Fixing x = x2, both prefer a21 to a22 when y = y1 and a22 to a21 when y = y2.

To illustrate how these conditionally aligned interests can be exploited for full revelation,

suppose (x1, y2) is realized. Given that ideal actions do not coincide, the receiver cannot

9We implement games with different ideal actions for the senders in some states. The weak preferences are
in most cases implemented in strict preferences, ensuring that ideal actions are unique in each state. Although
players are assumed to be von Neuman-Morgenstern utility maximizers and thus carry cardinal preferences,
the illustration in this subsection remains intact if the preference orders are considered ordinal.
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count on a single sender to pin down the truth. The situation changes when she can have

both senders provide information to her. Suppose Sender 1 truthfully reveals (only) that

x = x1 (and the receiver believes him). This makes Sender 2’s ideal action, max%(a21, a22),

out of reach, forcing him a choice between a11 and a12, the respective actions that the receiver

will take when she believes that the state is (x1, y1) and (x1, y2). Since Sender 2 prefers a12

to a11 in state (x1, y2), he will prefer to tell that y = y2. And given that Sender 2 truthfully

reveals that y = y2, Sender 1 will also, by a similar argument, prefer to tell that x = x1. The

true state (x1, y2) is thus revealed to the receiver. In effect, a sender truthfully reveals along

a dimension to help align the interests of the other sender with the receiver’s.

2.2 Two Baseline Games

We induce the above environment for experimentations. Figure 1 depicts the payoff profiles

of two baseline games, Game T (two senders) and Game S (single sender), which we use to

address, among other things, the comparative statics with respect to the number of senders.

State: (L,U)
Action left right

up 20 20 50 0 50 0
down 50 0 0 10 10 20

State: (R,U)
Action left right

up 0 50 0 20 20 50
down 10 10 20 50 0 0

State: (L,D)
Action left right

up 50 0 0 10 10 20
down 20 20 50 0 50 0

State: (R,D)
Action left right

up 10 10 20 50 0 0
down 0 50 0 20 20 50

(a) Game T

State: (L,U)
Action left right

up 20 50 0 0
down 50 0 10 20

State: (R,U)
Action left right

up 0 0 20 50
down 10 20 50 0

State: (L,D)
Action left right

up 50 0 10 20
down 20 50 0 0

State: (R,D)
Action left right

up 10 20 50 0
down 0 0 20 50

(b) Game S

Figure 1: Payoff Profiles: Baseline Games

In the experiment, we label the state as (H,V ) ∈ {L,R} × {U,D} and the action as

(h, v) ∈ {(left, up), (right, up), (left, down), (right, down)}. The information transmis-
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sion problem is framed as the sender(s) providing recommendations to the receiver, where

we assign literal meaning to messages which is the same as the labels for actions: Mi =

{“(h, v)”|“(left, up)”, “(right, up)”, “(left, down)”, “(right, down)”}.10

Each cell in Figure 1 contains players’ payoffs when an action is taken in a state. In Game

T, the numbers represent (Sender 1’s payoff, Sender 2’s payoff, receiver’s payoff), with Sender

2’s payoff omitted in Game S. The payoffs are assigned according to Table 1. To provide

salience, the rankings of actions are, except for the receiver’s two least preferred actions,

implemented in strict preferences. To give the fully revealing equilibrium a best chance to be

implemented in the laboratory, we choose the set of preference orders where it is “dominant”

for a sender to truthfully reveal on a dimension regardless of what the other sender reveals on

the other.11 Note, however, that the “dominance” holds only when the receiver believes the

sender, which makes the problem faced by subjects not strategically trivial.

Babbling equilibrium always exists in cheap-talk games. Throughout the equilibrium anal-

ysis, we focus on informative equilibria. As discussed in Section 2.1, the receiver cannot hope

to fully identify the state when there is only one sender providing information. Yet, given

some common ranking of actions between a sender and the receiver (which means their inter-

ests are partially aligned), partitional information can still be transmitted as in Crawford and

Sobel (1982). In particular, in Game S information can be transmitted along dimension H:12

Proposition 1. There exists a partially revealing equilibrium in Game S in which the sin-

gle sender truthfully reveals only on dimension H. Furthermore, the information partition

{{(L,U), (L,D)}, {(R,U), (R,D)}} that the receiver receives in the equilibrium is the only

partition that is consistent with equilibrium.

While the equilibrium information partition is unique, there is a continuum of equilibrium

outcomes, depending on how the receiver randomizes over actions. As a cheap-talk game,

there is also an inessential multiplicity of equilibria with different uses of messages supporting

a given equilibrium outcome. One example of message use involves the sender randomizing

between messages “(left, up)” and “(left, down)” when the state consists of L and between

“(right, up)” and “(right, down)” when it consists of R. How messages are used to support a

given outcome as well as which outcome prevails in a game are part of our empirical inquiry.13

10For expositional clarity, throughout the paper we use quotation marks to distinguish between actions and
messages. No such distinction is made in the experiment.

11In state (xi, yj), i, j = 1, 2, of Game T, Sender 1 and Sender 2 order the actions according to, respectively,
ai(3−j) � aij � a(3−i)(3−j) � a(3−i)j and a(3−i)j � aij � a(3−i)(3−j) � ai(3−j). Indifference is induced for the
receiver’s two least preferred actions so that Sender 1 and Sender 2 face a symmetric payoff environment.

12Game S is similar to the special case Battaglini (2002, p.1389) discusses where with one sender full
revelation occurs for only one dimension. Otherwise, our choice of Sender 1 as the single sender has been
arbitrary; had it been Sender 2, information would have been transmitted along another single dimension (V ).

13Despite the multiplicity of equilibria, throughout the paper we shall use the singular “equilibrium” to
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Given that payoffs are assigned according to Table 1, the illustration in Section 2.1 makes

it clear that full revelation of the state is possible in Game T:

Proposition 2. There exists a fully revealing equilibrium in Game T in which each sender

truthfully reveals on at least one dimension. Two major classes of senders’ strategy profiles

that constitute a fully revealing equilibrium are: 1) both Sender 1 and Sender 2 truthfully

reveal on both dimensions H and V ; and 2) Sender 1 truthfully reveals only on dimension H

and Sender 2 only on dimension V , and both babble by means of randomization on the other

respective dimensions.

We comment on the types of out-of-equilibrium messages that may emerge in Game T,

setting the stage to introduce additional games for robustness investigation. A fully revealing

equilibrium in Game T may or may not involve out-of-equilibrium messages. Under the first

class of strategy profiles, they arise in the form of inconsistent message pairs. Since both

senders truthfully reveal the state, in equilibrium the receiver expects to receive messages

that indicate the same (H, V ). Out-of-equilibrium messages therefore arise when a message

pair indicating different values for H, V , or both are received. When a sender only reveals

on one dimension, inconsistent message pairs will not arise. A sender’s babbling dimension

is the truth-revealing dimension of the other sender, so there is nothing to be inconsistent

with. However, out-of-equilibrium messages may still arise in the form of unused messages.

Since each sender reveals only a binary variable, two messages suffice for each to separate,

leaving the possibility that the other two messages will be unused in equilibrium. In cheap-talk

games, however, unused messages are a trivial type of out-of-equilibrium messages. In Game

T, one can have all messages used without changing the information each sender provides by

prescribing the senders to randomize when they babble. This is the second class of strategy

profiles. Without any out-of-equilibrium messages, inconsistent or unused, a fully revealing

equilibrium constituted by this class is free of out-of-equilibrium beliefs.14

2.3 Robustness and Additional Games

We contribute to the robustness inquiry of the fully revealing equilibrium by combining the-

oretical consideration with empirical investigation. A prerequisite for addressing in the lab-

oratory an issue related to out-of-equilibrium beliefs is to be able to control the scenarios in

which they arise. Toward this end, we introduce Game T′ and Game R (Figure 2).

refer to a class of equilibria unless the plural form is called for to convey specific points.
14The two classes of strategy profiles in Proposition 2 are meant to be representative but not exhaustive.

A fully revealing equilibrium can be constituted by, for example, a third class of strategy profiles as hybrids
of the existing two, where Sender 1 truthfully reveals on both dimensions and Sender 2 only on dimension V .
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State: (L,U)
Action left right

up 20 20 50 0 50 0
down 50 0 0 10 10 20

State: (R,U)
Action left right

up 0 15 0 20 20 50
down 10 30 20 50 0 0

State: (L,D)
Action left right

up 15 0 0 30 10 20
down 20 20 50 0 50 0

State: (R,D)
Action left right

up 10 10 20 50 0 0
down 0 50 0 20 20 50

(a) Game T′

State: (L,U)
Action left right

up 20 20 50 0 50 0
down 50 0 0 10 10 20

State: (R,U)
Action left right

up 0 15 0 20 20 50
down 10 30 20 50 0 0

State: (L,D)
Action left right

up 15 0 0 30 10 20
down 20 20 50 0 50 0

No State

(b) Game R

Figure 2: Payoff Profiles: Games for Addressing Robustness

The different possibilities for out-of-equilibrium messages in Game T creates difficulty for

identifying and interpreting any observed behavior as out-of-equilibrium. Our first step in con-

trolling out-of-equilibrium beliefs is to entirely eliminate the scenarios in which they emerge.

In Game T′, the message spaces are truncated and relabeled as M1 = {“h”|“left”, “right”}
and M2 = {“v”|“up”, “down”}. The binary message spaces ensure that neither inconsistent

message pairs nor unused messages will arise in a fully revealing equilibrium. Game T′ also

carries different payoff numbers (underlined in Figure 2(a)), which preserve the preference

orders in Table 1 but make it not “dominant” for Sender 1 to truthfully reveal on dimension

H in state (L,D) and for Sender 2 on dimension V in state (R,U). In summary, we have:

Proposition 3. There exists a fully revealing equilibrium in Game T ′ in which Sender 1

truthfully reveals on dimension H and Sender 2 on dimension V . There exists no other class

of senders’ strategy profiles that constitutes a fully revealing equilibrium. Furthermore, any

fully revealing equilibrium in Game T ′ is free of out-of-equilibrium beliefs.

Our next step in controlling out-of-equilibrium beliefs is to have them arise under specific

scenarios that can be more readily identified in the data. In this, we leverage on Ambrus and

Takahashi’s (2008) insight on the cause of out-of-equilibrium messages under a restricted state
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space, where after a deviation a message pair may point to a nonexistent “state.” To capture

this, we eliminate state (R,D) in Game T′ and adjust the prior so that the remaining three

states are equally likely. This gives us Game R, which also has binary message spaces.

To register a difference from inconsistent message pairs, we call out-of-equilibrium messages

arisen due to restricted state space irreconcilable message pairs. Fully revealing equilibrium

also exists in Game R, but now out-of-equilibrium beliefs, which emerge uniquely after irrec-

oncilable message pairs, play a crucial role. Consider a deviation by Sender 2 when the state is

(R,U). In Game T′, the receiver, being told by the truthful Sender 1 that the state consists of

R and by the deviating Sender 2 that it consists of D, cannot detect that there is a deviation.

She will take action (right, down) as when (R,D) is truthfully revealed in equilibrium. A

deviation does not lead to the receipt of out-of-equilibrium messages because every possible

message pair is expected in equilibrium. What deters Sender 2 from deviating is the fact that,

in state (R,U), (right, down) is not as attractive as the equilibrium (right, up). In Game R,

the same deviation creates an entirely different scenario. Given that state (R,D) no longer

exists, the receiver can detect that there is a deviation because under no circumstance will

she receive such message pair, now irreconcilable, in equilibrium. The deviation does lead

to the receipt of out-of-equilibrium messages, and certain beliefs, as stated in the following

proposition, are required to deter the deviation.

Proposition 4. There exists a fully revealing equilibrium in Game R in which Sender 1

truthfully reveals on dimension H and Sender 2 on dimension V . There exists no other class

of senders’ strategy profiles that constitutes a fully revealing equilibrium. Furthermore, any

fully revealing equilibrium in Game R is supported by out-of-equilibrium beliefs that induce the

receiver to take action (left, up) with probability at least 1
2

after an irreconcilable message pair.

We adopt Battaglini’s (2002) criterion for our robustness analysis, which imposes continu-

ity on beliefs. We define for each game a corresponding ε-perturbed game: with independent

probability εi Sender i’s observation of the state is subject to mistake and he observes a

random state drawn from a probability distribution, gi, that puts positive probability on all

possible states. The following definition is the same as that in Battaglini (2002):

Definition 1. An equilibrium is robust if there exists a pair of probability distributions (g1, g2)

and a sequence εn = (εn1 , ε
n
2 ) converging to zero such that out-of-equilibrium beliefs of the

equilibrium are the limit of the beliefs that the equilibrium strategies would induce in an ε-

perturbed game as εn → 0.

We apply the robustness criterion to the fully revealing equilibria in the three games with

two senders. For Game R, we have:
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Corollary 1. None of the fully revealing equilibria in Game R is robust.

Suppose the message uses that support the fully revealing equilibrium in Game R are that

“left” and “right” are used by Sender 1 to reveal L and R and “up” and “down” by Sender 2

to reveal U and D. Accordingly, (“right”, “down”) is the irreconcilable message pair. In an

ε-perturbed game, the receiver considers to have received the message pair after at least one

sender has made a mistake. And her posterior beliefs are always derived from Bayes’ rule.

When ε is small, the event that both senders have made a mistake is irrelevant; the receiver

believes that one of the messages, “right” or “down”, conveys information about the state, and

in the limit she assigns zero probability to (L,U). In the original game, the out-of-equilibrium

beliefs required to support the fully revealing equilibrium have to put positive probability on

(L,U), and this “discontinuity” in beliefs render the equilibrium not robust.15

A fully revealing equilibrium in Game T constituted by the second class of strategy profiles

in Proposition 2 is free of out-of-equilibrium beliefs, which necessarily makes it robust. Under

the first class, one can construct both robust and non-robust equilibria.16 We thus have:

Corollary 2. Some, but not all, fully revealing equilibria in Game T are robust.

Finally, given that any fully revealing equilibrium in Game T′ is free of out-of-equilibrium

beliefs, the robustness criterion is trivially satisfied:

Corollary 3. All fully revealing equilibria in Game T ′ are robust.

3 Experimental Hypotheses and Procedures

3.1 Hypotheses

Table 2 summarizes the properties of the four games, which constitute our experimental

treatments. In formulating our hypotheses, we focus on information revelation outcomes that

15Battaglini (2002) uses senders’ mistaken observations as a vehicle to impose restriction on out-of-
equilibrium beliefs that parallels the consistency requirement of sequential equilibrium. Given that our games
are finite, we can directly apply the refinement of sequential equilibrium, which for Game R also rules out the
fully revealing equilibrium. We use Battaglini’s (2002) definition to be as close as possible to the theoretical
literature of multidimensional cheap talk.

16For an example of non-robust equilibrium, suppose in equilibrium each sender sends “(left, up)” for state
(L,U), “(right, up)” for (R,U), “(left, down)” for (L,D) and “(right, down)” for (R,D). Consider a deviation
by Sender 2 in state (R,D) in which he sends “(right, up)”. If the receiver responds to the inconsistent message
pair, (“(right, down)”, “(right, up)”), by taking action (left, up), Sender 2 will be deterred from deviating.
However, the fully revealing equilibrium will not be robust: in taking (left, up), the receiver is induced by
out-of-equilibrium beliefs that cannot be rationalized as limit of equilibrium beliefs in a perturbed game.
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are consistent with the equilibria, although what strategies lead to the observed outcomes will

also be a major part of our data analysis.

Table 2: Properties of the Games

Game/Treatment No. of
Senders

Size of Sender’s
Message Space

No. of
States

Out-of-Equilibrium
Messages

Fully Revealing
Equilibrium

Robust

Baseline
Game S 1 4 4 0–2 No N/Aa

Game T 2 4 4 0–12 Yes Some

Robustness
Game T′ 2 2 4 0 Yes Yes
Game R 2 2 3 1 Yes No

aWe focus our robustness analysis on fully revealing equilibria, and thus it does not cover Game S.

Our first hypothesis compares the two baseline games, where the treatment variable is the

number of senders. The comparative statics is informed by the partially revealing equilibrium

in Game S (Proposition 1) and the fully revealing equilibrium in Game T (Proposition 2):

Hypothesis 1. The receivers in Game T identify the true state more often than do the

receivers in Game S.

Our second hypothesis compares Game T′ and Game R, where the treatment variable is

the number of states. The comparative statics is informed by the non-robust fully revealing

equilibrium in Game R (Corollary 1) and the robust one (Corollary 3) in Game T′. In

translating the robustness results into empirical hypotheses, we rely on the presumption that

equilibria that are robust or plausible present behavioral rule that is more intuitive for subjects

to discover and follow. We anticipate that non-robust equilibrium is followed less often, which

manifests in terms of information revelation outcomes as:

Hypothesis 2. The receivers in Game R identify the true state less often than do the receivers

in Game T ′.

3.2 Procedures

All four games share the same experimental procedures. Four sessions are conducted for

each game using between-subject design. All sessions are conducted in Chinese using z-

Tree (Fishchbacher, 2007) at the Taiwan Social Science Experimental Laboratory (TASSEL)

affiliated with the National Taiwan University. A total of 260 subjects without prior experience

in our experiment are recruited from the undergraduate/graduate population of the university.

Games with two senders are implemented in five, six or seven groups.17 Two sessions of

17Our target is to recruit six groups per session and set a lower limit of five groups. We meet our target
for all four sessions of Game T. For Game T′, we use the lower limit for three sessions while the remaining
session has seven groups. For Game R, two sessions are conducted in six groups and two in five.
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Game S are conducted in seven groups with the other two in five and nine. Upon arrival at

the laboratory, subjects are instructed to sit at separate computer terminals. Each receives

a copy of the experimental instructions. To ensure that the information contained in the

instructions is induced as common knowledge among the participants, the instructions are

read aloud, accompanied by slide illustrations.

In each session, subjects first participate in three rounds of practice and then 50 official

rounds. Random matching is used. Using Game T as an illustration, subjects form groups

of three: Member A (Sender 1), Member B (Sender 2), and Member C (receiver). The roles

are randomly assigned and last throughout the session. At the beginning of each round, the

computer randomly draws one of (L,U), (R,U), (L,D) or (R,D). The draws are independent

across groups and rounds. The drawn outcome is revealed on the screens of Member A

and Member B, after which they input their recommendation for Member C. Each sender’s

recommendation is input in two steps. Member A inputs “left”/“right” first, followed by

“up”/“down”. The opposite order is used for Member B.18 The four inputs, two by each

sender, are combined and revealed to Member C in one step. The screen of Member C will

show, for example, that “Member A recommends left; Member A recommends up; Member

B recommends right; Member B recommends up.” Member C then chooses one of (left, up),

(right, up), (left, down) or (right, down). After the action decision, the round’s data—the

computer’s draw, Member A’s and Member B’s recommendations, Member C’s action and

the subject’s payoff—is shown on each subject’s screen, after which the round ends. In every

step of the decisions, the payoff profiles in Figure 1(a) are shown on each subject’s screen.19

A payoff of 10 translates into a real payment of NT$5. A subject is paid his or her sum of

rewards from all 50 rounds plus a NT$100 show-up fee. Subjects earned on average NT$768.77

(≈US$26.91), ranging from NT$355 (≈US$12.43) to NT$1300 (≈US$45.50).

4 Findings and Analysis

4.1 Baseline Games: Game S and Game T

We begin by analyzing how subjects use and interpret messages that would result in the in-

formation revelation outcomes we hypothesize on. In cheap-talk games, meaning of a message

18Since in Game T′ and Game R, Member A inputs only “left”/“right” and Member B “up”/“down”, we
intend to maintain consistency across games so that both members in Game T are inputting first on the only
dimensions their counterparts in Game T′ and Game R enter.

19Refer to Appendix B for an English translation (by the authors) of the experimental instructions for
Game T. While the original instructions are in Chinese (Appendix D), the notation for the state, (L,U),
(R,U), (L,D) or (R,D), is presented “as is” to the subjects.
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is determined in equilibrium, which deprives the theory of direct guidance for interpreting

observed behavior. We seek guidance from the data themselves. As an anchoring point of our

analysis, we examine the frequencies of states contingent on messages. Figure 3(a) presents

the frequencies aggregated across last 30 rounds of all sessions.20 The frequencies indicate,

given actual uses of messages, what are their correct interpretations. Take message cases

(“(left, . )”, “( . , up)”) in Game T as an example. The frequencies of (L,U), (R,U), (L,D),

and (R,D) are, respectively, 87%, 10%, 3% and 0%.21 When one of these message pairs is

received, a receiver’s “correct beliefs” are to put exceedingly high weight on (L,U), which

render action (left, up) her best response. Accordingly, in interpreting observed behavior we

consider as if “recommend (h, v)” carried the literal meaning of “it is in your best interest to

take action (h, v)” and infer that subjects coordinate over such meanings when interests allow.

The inference also applies when it is in the senders’ interests to reveal only one dimension; for

instance, in Game S the true state is exclusively (L, ·) when the message “(left, up)” is used.
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Game S and Game T (Last 30 Rounds)

Table 3A presents, for senders’ strategies, the frequencies of state-message alignments for

each dimension. Table 3B presents the same for message-action alignments for receivers’

strategies. The alignments are defined with the aid of our inference above. For example, an

instance of state-message alignments on dimension H is recorded when the pair (L, .)-“(left,

20Given the fairly complicated nature of the games, we report data after reasonable amount of time has
been allowed for learning to occur. All our formal statistical tests also use data from the last 30 rounds.

21In Figure 10 (Appendix C), the cases in Game T are further divided into different message combinations.
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. )” occurs. Our findings about subjects’ strategies are consistent with the predictions in

Propositions 1 and 2:

Result 1. 1) Senders in Game S use the literal meanings of messages to reveal on dimension

H. The observed message uses provide no information on dimension V where approximately

uniform randomization over messages is observed. Receivers follow the literal meanings of

messages on dimension H but not on dimension V . 2) Observed message uses of Senders 1

in Game T resemble those of the senders in Game S. Senders 2 use the literal meanings of

messages to reveal on dimension V and provide no information on dimension H by random-

izing approximately uniformly. Receivers follow the literal meanings of messages of Senders 1

on dimension H and of Senders 2 on dimension V .

Truthful revelation on a dimension gives a predicted frequency of state-message alignments

of 100%, whereas randomized babbling gives a predicted frequency of 50%. Table 3A, Column

(1), shows that in Game S the observed frequencies for dimension H average at 95% in the first

20 rounds and converge to 100% in the last two rounds. For dimension V , Column (2) shows

that the frequencies under three different aggregations are all in the neighborhood of 50%. In

Game T, the frequencies of Senders 1 follow a similar pattern of those of the senders in Game

S but in most cases with lower values. Columns (3) and (4) report the frequencies of Senders

2. For dimension V , the frequencies average at 89% in the first 20 rounds and converge to 92%

in the last two rounds; for dimension H, the frequencies are in the neighborhood of 50%.22

In Game S, the receivers only follow the literal meanings of messages on dimension H:

Table 3B shows that the frequencies of message-action alignments average at 86% in the first

20 rounds and converge to 92% in the last two rounds. The most remarkable result from

Game T is the receivers’ sophistication to identify who to listen to for which dimension. The

frequencies of message-action alignments for dimension H with Senders 1’s messages follow a

similar pattern with the frequencies for dimension V with Senders 2’s messages: they average

at 85% − 89% in the first 20 rounds, converging to 92% − 96% in the last two rounds. For

the respective remaining dimensions, the frequencies are in the neighborhood of 50%. Figure

3(b) further confirms the findings. For Game T, the frequencies of receiver’s responses are

calculated contingent on, for instance, message pairs (“(left, . )”, “( . , up)”) which include

the cases when the two messages are inconsistent such as (“(left, down)”, “(right, up)”). Even

in these cases, the receivers are able to filter, selectively listening to each sender on distinct

dimension.23 The highly similar patterns of the frequencies in Figures 3(a) and 3(b) also show

that the receivers are best responding to the senders’ messages.

22Figure 9 in Appendix C further provides a breakdown of the state-message alignments for each state.
Using the literal meaning of messages, senders reveal on their “assigned” dimension and babble with close-to-
uniform randomization on the other dimension.

23Figure 11 in Appendix C further divides the cases into different message combinations. For the entirely
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Table 3: Summary Statistics

A. Frequencies of State-Message Alignments
(1) (2) (3) (4)

Rounds State-Message 1 State-Message 1 State-Message 2 State-Message 2
(H, .)� “(h, .)” (., V )� “(., v)” (H, .)� “(h, .)” (., V )� “(., v)”

Game S
1− 20 0.95 0.45 – –
21− 50 0.99 0.50 – –
49− 50 1.00 0.43 – –

Game T
1− 20 0.87 0.49 0.45 0.89
21− 50 0.89 0.39 0.47 0.94
49− 50 0.98 0.35 0.52 0.92

Game T′
1− 20 0.90 – – 0.92
21− 50 0.89 – – 0.97
49− 50 0.93 – – 0.95

Game R
1− 20 0.84 – – 0.82
21− 50 0.80 – – 0.78
49− 50 0.71 – – 0.78

B. Frequencies of Message-Action Alignments
(1) (2) (3) (4)

Rounds Message 1-Action Message 1-Action Message 2-Action Message 2-Action
“(h, .)”� (h, .) “(., v)”� (., v) “(h, .)”� (h, .) “(., v)”� (., v)

Game S
1− 20 0.86 0.58 – –
21− 50 0.89 0.54 – –
49− 50 0.92 0.52 – –

Game T
1− 20 0.85 0.51 0.55 0.89
21− 50 0.91 0.44 0.60 0.92
49− 50 0.92 0.35 0.50 0.96

Game T′
1− 20 0.94 – – 0.94
21− 50 0.95 – – 0.96
49− 50 0.95 – – 0.95

Game R
1− 20 0.79 – – 0.86
21− 50 0.83 – – 0.83
49− 50 0.83 – – 0.87

C. Frequencies of State-Action Alignments/State-Message-Action Alignments
(1) (2) (3) (4)

Rounds State-Action State-Action State-Action State-Message-Action
(H, .)� (h, .) (., V )� (., v) (H,V )� (h, v) (H,V )� (“(h, .)”, “(., v)”)� (h, v)

Game S
1− 20 0.82 0.51 0.42 –
21− 50 0.89 0.50 0.45 –
49− 50 0.92 0.54 0.49 –

Game T
1− 20 0.76 0.81 0.62 0.59
21− 50 0.83 0.86 0.73 0.71
49− 50 0.94 0.92 0.85 0.83

Game T′
1− 20 0.86 0.88 0.75 0.75
21− 50 0.85 0.93 0.81 0.80
49− 50 0.89 0.90 0.81 0.81

Game R
1− 20 0.76 0.78 0.70 0.59
21− 50 0.80 0.81 0.78 0.60
49− 50 0.76 0.78 0.71 0.55

Note: “Message 1” refers to Sender 1’s message, similarly for “Message 2”. For Game T′ and Game R with

binary message spaces, “h” is used for “(h, .)”, “v” for “(., v)”, and (“h”, “v”) for (“(h, .)”, “(., v)”).
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We turn to the information revelation outcomes. The observed strategies suggest that the

outcomes should also be consistent with equilibrium. Table 3C reports different frequencies

related to state-action alignments. Our findings confirm Hypothesis 1:

Result 2. The receivers in Game T identify the true state significantly more often than do

the receivers in Game S, in a manner that is consistent with the fully revealing equilibrium in

Game T and the partially revealing equilibrium in Game S.

In Game T, the frequencies of state-action alignments for both dimensions (Column (3)

of Table 3C) average at 62% in the first 20 rounds and converge to 85% in the last two

rounds. In Game S, the frequencies under different aggregations are all under 50%. Using

aggregated frequency from the last 30 rounds of each session as an independent observation,

we confirm that the frequency of the receivers identifying the true state is significantly higher

in Game T than in Game S (the Mann-Whitney test renders p = 0.01).24 Columns (1) and (2)

indicate that the lower frequencies in Game S are results of lower frequencies of alignments for

dimension V , which is consistent with the theoretical predictions.25 Figure 4 further presents

the round-by-round frequencies of state-action alignments aggregated across sessions. The

figure provides a visualization of the convergence in Game T, which is absent in Game S. As a

formal measure of the convergence, the Spearman rank-order coefficient between frequencies

and rounds is 0.69 with p < 0.0001 for Game T. There is a small positive coefficient for Game

S that is not statistically significant (0.12 with p = 0.4).
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Figure 4: Frequencies of State-Action Alignments: Game S, Game T and Game T′

The receivers’ average payoffs provide an alternative measure for information revelation

outcomes, where theory predicts an expected payoff of 25 in Game S and 50 in Game T.

inconsistent message pair (“(left, down)”, “(right, up)”), the frequency of action (left, up) is 84%; the receivers
selectively follow “left” from Senders 1 and “up” from Senders 2. A similar pattern is observed for other cases.

24The p-values reported for all non-parametric tests are from one-tailed tests.
25As additional evidence, Figure 8 in Appendix C presents the frequencies of actions contingent on state.
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Consistent with the findings above, the average payoffs are significantly higher in Game T than

in Game S (the Mann-Whitney test renders p = 0.01). They also show similar convergence

patterns to the predicted values: the average payoffs in Rounds 1 − 20, 21 − 50 and 49 − 50

are, respectively, 22.53, 23.7, and 25.38 for Game S and 31.75, 37.01, and 43.54 for Game T.

We conclude this subsection with regression analysis. We use data of each subject (i) in

each of the last 30 rounds (t) as an observation and use random effect regressions to mini-

mize the impacts of interdependent play. For information revelation outcomes, we estimate

the correlations between states and ideal actions for each dimension. For dimension H, the

following regression is estimated using maximum likelihood with standard errors clustered at

the subject level:

hit = βh−H1 Hit + βh−H2 (Hit ×DGameS
it ) + νh−Hi + εh−Hit , (1)

where DGameS
it is a Game S-dummy variable. A similar regression is run for dimension V .

Table 4, Column (2), reports the regression results. Column (1) reports the results using

Game S data alone and without the interaction term.

Table 4: Random Effect MLE Regressions: Action and Message on State (Last 30 Rounds)

(1) (2) (3) (4) (5)
Dimension H Action Action Message 1 Message 1 Message 2

hit hit “hit” “hit” “hit”

Hit 0.979*** 0.747*** 1.001*** 0.940*** -0.0403
(0.00709) (0.0294) (0.00169) (0.00986) (0.0383)

Hit ×DGameS
it – 0.0957** – 0.0584*** –

(0.0315) (0.0133)
(1) (2) (3) (4) (5)

Dimension V Action Action Message 1 Message 1 Message 2
vit vit “vit” “vit” “vit”

Vit 0.0380 0.747*** 0.0393 -0.197*** 0.983***
(0.0359) (0.0324) (0.0360) (0.0380) (0.0103)

Vit ×DGameS
it – -0.697*** – 0.228*** –

(0.0445) (0.0507)
Game Game S Games S, T Game S Games S, T Game T
No. of Observations 840 1560 840 1560 720
No. of Subjects 28 52 28 52 24
Note: “Message 1” refers to Sender 1’s message, similarly for “Message 2”. Standard
errors are in parentheses; *** for p <0.001, ** for p <0.01, * for p <0.05.

The fully revealing equilibrium in Game T predicts correlations of one between states and

actions for both dimensions; the partially revealing equilibrium in Game S predicts perfect

correlation for dimension H but zero correlation for dimension V . While it is unlikely to

observe point predictions in the data, statistically significant high correlations are observed
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in Game T for both dimensions (βh−H1 , βv−V1 = 0.747 with p < 0.001).26 In Game S, the

correlations are even closer to the predicted: the correlation for dimension H is exceedingly

high (βh−H1 = 0.979 with p < 0.001), while the correlation for dimension V is close to zero

(βv−V1 = 0.038, not significantly different from zero). We consider these as evidence that the

observed information revelation outcomes are not results of random play.27 The results from

Game S contrast with findings from other single-sender communication game experiments,

in which over-transmission of information (in reference to equilibrium predictions) is often

observed. We speculate that the opportunity to provide truthful information on one dimension

offers a channel for subjects to release the tendency to transmit information.

For senders’ strategies, we estimate the correlations between messages and states in ref-

erence to the literal meanings, replacing hit in equation (1) with “hit”, the first element of

the sender’s message (similarly for vit). Regressions are run for both senders in Game T. For

Senders 2, the regressions are run with Game T data alone without the interaction term. In

Game S, the correlation is extremely high for dimension H (β“h”−H
1 = 1.001 with p < 0.001)

and close to zero for dimension V (β“v”−V
1 = 0.0393, not significantly different from zero). In

Game T, the correlations for Senders 1 are similar to those of their incarnations in Game S

(β“h”−H
1 = 0.94 with p < 0.001 and β“v”−V

1 = −0.197 with p < 0.001). The correlations for

Senders 2 are orthogonal to those for Senders 1’s (β“h”−H
1 = −0.0403, not significantly different

from zero, and β“v”−V
1 = 0.983 with p < 0.001). For estimating receivers’ strategies, we re-

place Hit in equation (1) with “hit” (similarly for Vit). Receivers’ actions in Game S are highly

correlated with the senders’ messages for dimension H (βh−“h”1 = 0.978 with p < 0.001).28 For

dimension V , the correlation is positive but much lower (βv−“v”1 = 0.101 with p < 0.01). A

similar finding is obtained for Game T with Senders 1 (βh−“h”1 = 0.975 with p < 0.001 and

βv−“v”1 = −0.0845 with p < 0.05). The correlations with Senders 2 are orthogonal to those

with Senders 1 (βh−“h”1 = −0.0159, not significantly different from zero, and βv−“v”1 = 0.974

with p < 0.001). As a whole, the regression results confirm that the observed strategies are

consistent with the equilibrium where literal meaning of message is used.

4.2 Robustness: Game T′ and Game R

To compare the information revelation outcomes in Game T′ and Game R, we introduce a new

measure, the frequencies of state-message-action alignments (Table 3C, Column (4)). With

26For expositional convenience, we abuse terminology by referring to the coefficients as “correlations.”
27As an alternative test, Blume et al. (1998, 2001) compare the observed frequencies of equilibrium out-

comes with those predicted by chance alone. Using a similar approach with aggregate data on state-action
alignments, we also reject random play (with 25% of full revelation outcomes) for both Game S and T (the
Wilcoxon signed-rank tests render p = 0.0625, the lowest possible value with four observations/sessions).

28The detailed estimation results are reported in Table 6 in Appendix C.
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only three states in Game R, the probability that the receivers take the ideal actions out of

random play is 33%, higher than the 25% with four states; the state-action alignment does

not provide the same ground for comparison. We use a more stringent measure by requiring

alignments among states, the literal meaning of messages, and actions. While there is no

theoretical ground for this measure because in cheap-talk games different message uses can

support a given equilibrium outcome, our empirical findings so far indicate that subjects are

using the literal meanings in their equilibrium play. Columns (3) and (4) of Table 3C also

show that in Game T′ (and Game T as well) there is minimal difference between the two

measures, whereas the frequencies drop significantly in Game R with state-message-action

alignments, providing evidence that the three states are creating differences that are picked

up by our new measure.29 Based on this measure, we confirm Hypothesis 2:

Result 3. The receivers in Game R identify the true state significantly less often through the

equilibrium than do the receivers in Game T ′. Furthermore, in Game R while the receivers’

observed strategies constitute best responses to the senders, the senders’ observed strategies are

not best responses given the receivers’ strategies.
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Figure 5: Frequencies of State-Message-Action Alignments: Game T, Game T′ and Game R

In Game T′, the frequencies of state-message-action alignments average at 75% in the first

20 rounds, 80% in the last 30 rounds and 81% in the last two rounds. The corresponding

frequencies in Game R are all lower: 59%, 60%, and 55%. And the difference is statistically

significant (the Mann-Whitney test renders p = 0.03). Figure 5 presents the round-by-round

frequencies, providing a visualization of the differences.

29Testing the null hypothesis of no difference against the alternative that the more stringent measure results
in lower frequencies, the Wilcoxon signed-rank tests render p-values of 0.4375 for Game T′, 0.125 for Game
T, and 0.0625—the lowest possible value with four sessions/observations—for Game R.
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We obtain further statistical support by estimating regression equation (for dimension H):

hit =βh−H1 Hit + βh−H2 (Hit ×DGameS
it ) + βh−H3 (Hit ×DGameT

it )

+ βh−H4 (Hit ×DGameT
it ×D1−20

it ) + βh−H5 (Hit ×DGameR
it ) + νh−Hi + εh−Hit ,

(2)

where D1−20
it is a dummy variable for the first 20 rounds. A similar regression is run for

dimension V . There are high correlations between actions and states in Game T′ (βh−H1 =

0.733 and βv−V1 = 0.82, both with p < 0.001).30 The correlations are significantly lower in

Game R (βh−H5 = −0.179 and βv−V5 = −0.24, both with p < 0.001).

Despite our focus of comparing Game T′ with Game R, it may also be of interest to

compare it with Game T. In terms of state-action/state-message-action alignments, Table

3C and Figures 4 and 5 suggest that the receivers in Game T′ identify the true state more

often than do the receivers in Game T, although the difference is not subtantial (and also not

statistically significant). Yet the difference is more prominent in the early rounds, suggesting

that there is a faster convergence to equilibrium in Game T′. Subtracting for each round the

aggregated frequencies of the alignments in Game T from those in Game T′, we find that the

differences are negatively correlated with the rounds (the Spearman rank-order coefficients

between the frequencies and rounds are −0.299 with p = 0.035 for state-action alignments

and −0.305 with p = 0.031 for state-message-action alignments).31 There are two structural

differences between Game T′ and Game T, the sizes of the message spaces and the payoff

numbers, and it appears that the binary message spaces play the major role in facilitating the

faster convergence in Game T′. Blume et al. (2008) document that in sender-receiver games

with a priori meaningless messages, restricting the message space does affect convergence

to equilibrium. In our environment with two senders, restricting the message spaces can

have effect along a different line in which it helps avoid subjects’ potential confusion with

inconsistent message pairs. And its conducive effect on convergence appears to override the

potential negative effect of the loss of “dominance” in Game T′ for senders to reveal truthfully.

We turn to subjects’ strategies, presenting evidence for the second part of Result 3. For

senders’ strategies, Table 3A shows that the frequencies of state-message alignments are lower

30The detailed estimation results are reported in Column (3) of Table 7 in Appendix C. A Sender 1-subject
in Game T′ misreported on dimension H 70% of the time even in the last 30 rounds and explicitly stated in
the post experimental survey that his strategy was to “choose the opposite in the middle 10 and the last 20
rounds...” Column (4) reports estimation results dropping all data involving this outlier (one group per round;
50 data points in total). Dropping this subject gives us stronger results but not by much, suggesting that our
overall results are robust to subject’s manipulation.

31Using the 20th round as the cutoff, the regression results also provide support to the observation. Relative
to those in Game T′, the correlations between actions and states for dimension H are lower in Rounds 21−50
of Game T (βh−H

3 = −0.0732 with p < 0.05), with an even larger difference in Rounds 1− 20 (βh−H
4 = −0.04

with p < 0.01). For dimension V , the negative difference is, however, quite stable across the two sets of rounds
(βv−V

3 = −0.117 with p < 0.001 and βv−V
4 = −0.0055, essentially equal to zero).
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Figure 6: Frequencies of Messages Contingent on State: Game T′ and Game R (Last 30
Rounds)

in Game R than in Game T′. For receivers’ strategies, Table 3B also shows that the frequencies

of message-action alignments are lower in Game R.32 A more detailed account of senders’

message uses is presented in Figure 6. In Game R, while Senders 1 truthfully reveal when the

state is (L,U) or (R,U), they send the two available messages approximately uniformly when

the state is (L,D) (53% “left” and 47% “right”). Similarly, Senders 2 truthfully reveal when

the state is (L,U) or (L,D) but use “up” and “down”, again approximately uniformly (45%

vs. 55%), when the state is (R,U). Although in state (L,D) it is not “dominant” for Sender

1 to truthfully reveal and the same is true for Sender 2 in state (R,U), message uses in Game

T′ as a control show that this lack of “dominance” cannot be the major factor behind these

observations. For the receivers in Game R, note that it will never be in the receivers’ best

interest to take (right, down) without state (R,D), so the message pair (“right”, “down”) is

irreconcilable. And Figure 7(b) shows that the receivers respond to it by randomizing between

(right, up) and (left, down) essentially uniformly (49%). The remaining 2% all comes from

action (right, down). The action (left, up), required to support the fully revealing equilibrium,

is never in the support of the empirical distribution of actions, providing evidence against the

non-robust fully revealing equilibrium in Game R.

Figure 7 shows that the receivers in Game R are best responding to the senders’ messages,

32Table 7 (Columns (7), (8) and (10)) and Table 6 (Columns (3) and (5)) in Appendix C report results
from regressions similar to equation (2) with relevant changes of variables. Compared to Game T′, Game R
has significantly lower state-message and message-action correlations.
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Figure 7: Frequencies of States Contingent on Messages/Receiver’s Responses to Messages:
Game T′ and Game R (Last 30 Rounds)

even for the irreconcilable (“right”, “down”). However, the senders’ message uses in aggregate

do not constitute best responses to the receivers. In state (L,D), Senders 1 are randomizing

between the two messages. However, given Senders 2’s sending “down” in state (L,D) and the

receivers’ responses of (left, down) after receiving (“left”, “down”) and of randomizing between

(right, up) and (left, down) after receiving (“right”, “down”), Senders 1 should strictly prefer

to send “right”. Similarly, in state (R,U), Senders 2, instead of randomizing between “up”

and “down”, should strictly prefer to send “down”. Although the frequency of full revelation

outcomes is lower in Game R, it is still higher than what would have predicted by chance

alone.33 The above suggests, however, that the observed full revelation outcomes in Game R,

are, unlike other games, not constituted by equilibrium play. To look for an interpretation of

these findings, we further examine data from individual sender-subjects.

4.3 Game R: A Behavioral Model with Honest Senders

Table 5 presents the frequencies of truthful revelations of each sender-subject in the last 30

rounds of Game R, grouped by whether the subject is Sender 1 (left panel) or Sender 2

(right panel). There are “honest” subjects who always or almost always truthfully reveal on

33The null hypothesis of random play is rejected in favor of equilibrium play (the Wilcoxon signed-rank
test renders p = 0.0625, the lowest possible value with four observations/sessions).
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their respective dimensions. And there is also a significant number of subjects who appear

to be “strategic” in the sense of being selectively truthful. We explore the dichotomy more

systematically with a simple classification. To identify between persistently truthful (honest)

and selectively truthful (strategic) subjects, we use frequencies under state (L,D) for Senders

1 and state (R,U) for Senders 2. We adopt an arbitrary but rather robust cutoff of 70%: a

subject will be classified as honest if and only if he/she truthfully reveals (L,D)/(R,U) more

than 70% of the time. Overall, 19 subjects (11 Sender 1-subjects and 8 Sender 2-subjects) are

classified as honest (highlighted in Table 5), representing 43% of all sender-subjects in Game

R.34 The changes to the classification result are limited to ±2 subjects for cutoffs 70%± 10%.

Table 5: Frequencies of Truthful Revelations by Individual Subjects in Game R (Last 30
Rounds)

Frequencies of Truthful Revelations
on Dimension H by Senders 1

Subject No. (L,U) (L,D) (R,U)
1 1 0.33 1
2 0.9 0.42 1
3 1 0.11 1
4 1 1 1
5 0.91 1 1
11 0.75 0 0.91
12 0.78 1 0.89
13 0.78 0.91 0.9
14 1 0 1
15 0.57 0.55 1
21 1 0.75 0.92
22 1 1 1
23 1 1 1
24 1 0 0.92
25 1 0.92 0.82
26 1 1 1
33 0.83 0.06 0.88
34 1 0.83 1
35 1 0.9 1
36 1 0 0.88
37 1 0 0.91
38 1 0 1

Overall 0.93 0.54 0.96

Frequencies of Truthful Revelations
on Dimension V by Senders 2

Subject No. (L,U) (L,D) (R,U)
6 0.88 0.67 0.3
7 1 1 0
8 1 1 0
9 1 1 1
10 0.82 1 0
16 1 0.82 0.14
17 1 0.88 0.4
18 1 1 1
19 1 0.93 0.09
20 1 1 0.69
27 0.92 0.67 0.08
28 1 1 1
29 1 1 0
30 1 1 1
31 1 1 1
32 1 1 0
39 1 1 0.1
40 1 1 0.27
41 1 1 0.91
42 0.91 0.9 0.33
43 1 0.93 0.78
44 1 0.92 1

Overall 0.98 0.94 0.46

The dichotomy of subjects motivates us to search for an alternative model to organize our

experimental data. We consider a behavioral model with two behavioral types of senders,

honest and strategic, and retain equilibrium as the solution concept. An honest sender always

truthfully reveals the state subject to the availability of the messages and their literal mean-

ings. A strategic sender best responds to maximize expected payoffs. A sender’s behavioral

34The prevalence of honest senders is consistent with “lying aversion” documented in the experimental
literature of communication games. See, for example, Gneezy (2005) and Sánchez-Pagés and Vorsatz (2007).
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type is his private information. The common prior is that a sender is honest with probability

λ ∈ (0, 1). The standard strategic model is a limiting case when λ→ 0.35

We conclude our analysis by presenting a robust equilibrium of the behavioral model which,

with appropriate choice of parameters, allows us to interpret findings from Game R in light

of equilibrium behavior:

Proposition 5. The following strategy profile constitutes a robust partially revealing equilib-

rium in the behavioral model of Game R for any λ ∈ (0, 1): 1) strategic Sender 1 sends “left”

in state (L,U) and “right” in both (R,U) and (L,D); 2) strategic Sender 2 sends “up” in

state (L,U) and “down” in both (R,U) and (L,D); 3) the receiver takes (h, v) after receiving

(“h”, “v”) unless (“h”, “v”) = (“right”, “down”) in which case she randomizes between (right,

up) and (left, down) with respective probabilities α and 1− α, α ∈ [0, 1].

With α = 1
2
, i.e., the receiver randomizes uniformly between (right, up) and (left, down)

upon receiving (“right”, “down”), the equilibrium captures reasonably well the observed ag-

gregate behavior of the receivers (Figure 7(b)), which the strategic model falls short of doing.

For the senders, with λ in the neighborhood of 1
2
, which is consistent with the classification

using individual subject data, the equilibrium also results in distributions of messages that

are consistent with the aggregate data on message uses (Figure 6).36 The resulting reinter-

pretation of message uses is that in state (L,D) “left” is entirely sent by the honest Senders

1 and “right” by the strategic Senders 1, and in (R,U) “up” is sent by the honest Senders

2 and “down” by the strategic Senders 2. Fixing λ precisely at 1
2
, the equilibrium predicts

probabilities of 67% for state-message-action alignments and 83% for state-action alignments,

which are fairly close to the aggregate numbers reported in Table 3C (60% and 78% respec-

tively). At the possible expense of introducing non-strategic players, the behavioral model

allows us to retain equilibrium as the basis for interpreting observed behavior. Theoretically,

since every message pair is expected in equilibrium so that there will be no out-of-equilibrium

beliefs, the partially revealing equilibrium also has the advantage of being robust.37

35While motivated by the data, our model fits into the growing literature of introducing behavioral players
into communication games. Through a level-k model, Crawford (2003) introduces honest senders and credulous
receivers into games with communication of intentions. For communication of private information, Ottaviani
and Squintani (2006) and Kartik et al. (2007) introduce credulous receiver into the Crawford and Sobel’s
(1982) setting. Chen (2011) further introduces honest sender. Sobel (1985) considers two types of strategic
sender, where one shares the receiver’s preference and thus behaves like an honest sender. Kartik et al.
(2007) and Kartik (2009) introduces lying costs for the sender; when the cost is infinitely high, the strategic
sender can be considered as honest sender. Finally, Jehiel and Koessler (2008) use an alternative equilibrium
concept—analogy-based expectation equilibrium (Jehiel, 2005) in which players bundle states into analogy
classes—to analyze communication in Crawford and Sobel’s (1982) model.

36The strategy profiles of the strategic players in Proposition 5 also constitute a partially revealing equi-
librium in the strategic model. The information partition in the equilibrium, {{(L,U)}, {(L,D), (R,U)}}, is,
however, inconsistent with our findings in which the receivers do sometimes identify states (L,D) and (R,U).

37While our behavioral model is motivated by the ad hoc task of rationalizing the findings from Game R,
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5 Concluding Remarks

In this study, we experimentally implement the fully revealing equilibrium first proposed

by Battaglini (2002) for multidimensional cheap talk. We find, consistent with equilibrium

predictions, that the frequency of fully revealing outcomes is significantly higher in two-sender

games than in one-sender game. Guided by Battaglini’s (2002) robustness criterion and the

insight of Ambrus and Takahashi (2008) regarding the impact of restricted state space, we also

investigate empirically the robustness of the fully revealing equilibrium. We obtain evidence

that fully revealing equilibria supported by implausible out-of-equilibrium beliefs are unlikely

to be implemented. Nevertheless, a behavioral equilibrium with a positive fraction of honest

senders allows us to interpret the observed play with equilibrium behavior. As an initial

experimental attempt to implement the fully revealing equilibrium in multidimensional cheap

talk, our approach has been to give it a best chance by creating an environment as simple

as possible, including a 2 × 2 state space and “dominance” for senders to truthfully reveal.

We believe that exploring the limits of implementing the fully revealing equilibrium in the

laboratory with different designs represent interesting and promising research for the future.
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Appendix A - Proofs

Proof of Proposition 1. Let µ = (µLU , µLD, µRU , µRD) be the receiver’s beliefs, where µHV

is the probability assigned to state (H, V ) ∈ {L,R} × {U,D}, and UR(a|µ) be her expected

payoff from taking action a given beliefs µ. Then, we have UR((left, up)|µ) = 50µLU +

20µRD, UR((right, up)|µ) = 50µRU + 20µLD, UR((left, down)|µ)) = 50µLD + 20µRU , and

UR((right, down)|µ) = 50µRD + 20µLU . Accordingly, the receiver’s best response to µ is

(left, up) if µLU ≥ µRD and 5µLU + 2µRD ≥ 3 max{µLD, µRU}+ 2(µLD + µRU); (A.1)

(left, down) if µLD ≥ µRU and 5µLD + 2µRU ≥ 3 max{µLU , µRD}+ 2(µLU + µRD); (A.2)

(right, up) if µRU ≥ µLD and 5µRU + 2µLD ≥ 3 max{µLU , µRD}+ 2(µLU + µRD); (A.3)

(right, down) if µRD ≥ µLU and 5µRD + 2µLU ≥ 3 max{µLD, µRU}+ 2(µLD + µRU). (A.4)
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We first show the existence of the partially revealing equilibrium. Suppose that the sender

truthfully reveals that the state is L on dimension H and babbles on dimension V . Given the

uniform prior, the receiver’s updated beliefs are µLU = µLD = 1
2

and µRU = µRD = 0. (A.1)

and (A.2) are satisfied, and randomizing between (left, up) and (left, down) with probabilities

(p, 1 − p) is a best response of the receiver for any p ∈ [0, 1]. Consider next that the sender

truthfully reveals that the state is R on dimension H and babbles on dimension V . The

receiver’s updated beliefs are µRU = µRD = 1
2

and µLU = µLD = 0. (A.3) and (A.4) are

satisfied, and randomizing between (right, up) and (right, down) with probabilities (q, 1− q)
is a best response of the receiver for any q ∈ [0, 1]. In state (L,U), we require that the sender

has no incentive to reveal that the state consists of R, or 20p+ 50(1− p) ≥ 10(1− q), which is

satisfied for all p ∈ [0, 1] and all q ∈ [0, 1]. Similarly, it is straightforward that for all p ∈ [0, 1]

and all q ∈ [0, 1], the sender has no incentive to deviate in states (R,U), (L,D) and (R,D).

We show that there exists no equilibrium in Game S in which the receiver receives informa-

tion partitions other than {{(L,U), (L,D)}, {(R,U), (R,D)}}. It is straightforward that the

fully revealing partition {{(L,U)}, {(L,D)}, {(R,U)}, {(R,D)}} cannot be sustained as equi-

librium. It suffices to consider state (L,U) in which the sender has an incentive to tell that it is

(L,D) given that he will receive 50 rather than 20. We show next that information partitions

where only one state is fully revealed (1-3 partitions) are not feasible in equilibrium. Consider

the partition where only (L,U) is fully revealed. The receiver takes (left, up) when the state

is (L,U). In all other three states, the receiver’s updated beliefs are µLD = µRU = µRD = 1
3

and µLU = 0. Only (A.2) and (A.3) are satisfied, and the receiver randomizes between (left,

down) and (right, up) with probabilities (p, 1 − p), p ∈ [0, 1]. This does not constitute an

equilibrium, because in state (L,D) the receiver has an incentive to tell that it is (L,U) given

that 50 > 20p+ 10(1− p) for all p ∈ [0, 1]. Similar arguments hold for all other 1-3 partitions.

We show next that other 2-2 partitions cannot constitute an equilibrium. Consider the

partition where dimension V is fully revealed. When the true state consists of U , µLU = µRU =
1
2

and µLD = µRD = 0. (A.1) and (A.3) are satisfied, and the receiver’s best response is to

randomize between (left, up) and (right, up) with probabilities (p, 1 − p) for some p ∈ [0, 1].

When the true state consists of D, µLU = µRU = 0 and µLD = µRD = 1
2
. (A.2) and (A.4)

are satisfied, and the receiver’s best response is to randomize between (left, down) and (right,

down) with probabilities (q, 1−q) for some q ∈ [0, 1]. To show that this does not constitute an

equilibrium, it suffices to consider states (L,U) and (R,U). The requirements for no profitable

deviation are, respectively, 20p ≥ 50q+10(1−q) and 20(1−p) ≥ 10q+50(1−q), which implies

20 ≥ 60, a contradiction. For the partition {{(L,U), (R,D)}, {(L,D), (R,U)}} in which the

diagonal is revealed, a similar argument shows that in states (L,U) and (R,D), the absence of

profitable deviations requires, respectively, 50q ≤ 20p+10(1−p) and 50(1−q) ≤ 10p+20(1−p),
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which leads to the contradiction of 50 ≤ 30.

We complete the proof by ruling out 1-1-2 partitions. There are six possible partitions

in this category. By the same argument against the fully revealing partition, the two par-

titions in which H is fully revealed for fixed values of V cannot be sustained in equilib-

rium. The two other partitions in which V is fully revealed for fixed values of H are also

not feasible in equilibrium, because the sender shares no common interest with the receiver

along dimension V . This leaves two partitions, {{(L,U), (R,D)}, {(L,D)}, {(R,U)}} and

{{(L,U)}, {(R,D)}, {(L,D), (R,U)}}. Since when the state is one of the partially revealed

ones the sender has an incentive to tell that it is one of the fully revealed ones, for this yields

him a payoff of 50, they also cannot be feasible in equilibrium.

Proof of Proposition 2. We construct a fully revealing equilibrium. To economize on no-

tations, we denote (h, v) to be the receiver’s ideal action in state (H, V ) ∈ {L,R} × {U,D}.
Consider the following strategy profiles of the senders: for all (H,V ) ∈ {L,R} × {U,D},∑

ṽ∈{up, down}

σ1(“(h, ṽ)”|(H,V )) = 1, and
∑

h̃∈{left, right}

σ2(“(h̃, v)”|(H, V )) = 1. (A.5)

Sender 1 truthfully reveals on dimension H but is not required to truthfully reveal on dimen-

sion V ; Sender 2 does the exact opposite. Upon receiving the senders’ messages, the receiver

updates her beliefs using Bayes’ rule: for any w ∈ {up, down} and k ∈ {left, right}, we have

µHV ((“(h,w)”, “(k, v)”)) =
1
4
σ1(“(h,w)”|(H, V ))σ2(“(k, v)”|(H,V ))∑

(H̃,Ṽ )∈{L,R}×{U,D}
1
4
σ1(“(h̃, w)”|(H̃, Ṽ ))σ2(“(k, ṽ)”|(H̃, Ṽ ))

=
σ1(“(h,w)”|(H,V ))σ2(“(k, v)”|(H, V ))

σ1(“(h,w)”|(H,V ))σ2(“(k, v)”|(H, V ))
= 1,

(A.6)

where the second equality follows from the fact that either σ1(“(h,w)”|(H̃, Ṽ )) = 0 or

σ2(“(k, v)”|(H̃, Ṽ )) = 0 unless (H̃, Ṽ ) = (H,V ). Given the beliefs, the best responses of

the receiver are to take her ideal actions: ρ(“(h,w)”, “(k, v)”) = (h, v).

To verify that (A.5) constitutes an equilibrium, note that given the strategies of Sender

2 and the receiver, Sender 1 can only influence the receiver in the choice between (h, v)

and (h̃, v), h 6= h̃; it is straightforward to verify that Sender 1 strictly prefers (h, v) over

(h̃, v). Similarly, Sender 2, given the others’ strategies, can only influence the receiver in the

choice between (h, v) and (h, ṽ) where he strictly prefers (h, v) over (h, ṽ). Other than (A.5),

there is no restriction on σ1(“(h, up)”|(H,V )), σ1(“(h, down)”|(H,V )), σ2(“(left, v)”|(H,V ))
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and σ2(“(right, v)”|(H,V )). If σ1(“(h, v)”|(H,V )) = σ2(“(h, v)”|(H, V )) = 1, we are in the

first class of strategy profiles. The receiver’s response after receiving an out-of-equilibrium

inconsistent message pair can be assigned to be one of the equilibrium responses, which suffice

to deter deviations by the senders. If σ1(“(h, up)”|(H,V )) > 0, σ1(“(h, down)”|(H, V )) >

0, σ2(“(left, v)”|(H, V )) > 0 and σ2(“(right, v)”|(H,V )) > 0, we are in the second class of

strategy profiles, in which there is no out-of-equilibrium message pair.

Proof of Proposition 3. With the binary message spaces the senders’ strategy profiles in

(A.5) become σ1(“h”|(H, V )) = σ2(“v”|(H,V )) = 1. The receiver updates her beliefs in a

similar fashion as in (A.6), and her best response is ρ(“h”, “v”) = (h, v). Similar to the

argument in the proof of Proposition 2, the senders’ strategies also constitute best responses.

There are two other classes of strategy profiles to achieve full revelation: 1) Sender 1 truthfully

revealing on dimension V and Sender 2 on dimension H, and 2) one sender reveals whether

the state is in {(L,U), (R,D)} or in {(L,D), (R,U)}, and the other sender truthfully reveals

on either dimension V or dimension H. It is straightforward to verify that neither of these

strategy profile can constitute an equilibrium. Given that under the binary message spaces

there is no out-of-equilibrium message pair for any fully revealing equilibrium, the receiver’s

beliefs are always derived from Bayes’ rule.

Proof of Proposition 4. Consider, as in the proof of Proposition 3, σ1(“h”|(H,V )) =

σ2(“v”|(H, V )) = 1, where the receiver’s best response is ρ(“h”, “v”) = (h, v). It carries

over from Game T′ that in state (L,U) no sender has an incentive to deviate. To ensure that

the senders’ strategies are best responses, we specify the receiver’s response after receiving an

irreconcilable message pair, either in state (R,U) or (L,D). Given the receiver’s beliefs µ =

(µLU , µLD, µRU), her expected payoffs are UR((left, up)|µ) = 50µLU , UR((right, down)|µ) =

20µLU , UR((right, up)|µ) = 50µRU + 20µLD, and UR((left, down)|µ)) = 50µLD + 20µRU . For

any µ, UR((right, down)|µ) < 1
2
UR((left, up)|µ) + 1

4
UR((left, down)|µ)) + 1

4
UR((right, up)|µ).

Thus, (right, down) is strictly dominated. Suppose that, after receiving an irreconcilable mes-

sage pair, the receiver takes (left, up), (right, up) and (left, down) with respective probabilities

p, q and 1− p− q. In state (L,D), in order for Sender 1 not to have an incentive to tell that

the state consists of R, we require 20 ≥ 15p+ 30q + 20(1− p− q) or p ≥ 2q. In state (R,U),

in order for Sender 2 not to have an incentive to tell that the state consists of D, we require

that 20 ≥ 15p + 20q + 30(1 − p − q) or 3p + 2q ≥ 2. Combining p ≥ 2q and 3p + 2q ≥ 2,

we obtain p ≥ 1
2

as required. Similar to Game T′, other classes of strategy profiles to achieve

full revelation cannot constitute an equilibrium so that σ1(“h”|(H,V )) = σ2(“v”|(H,V )) = 1
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represent the unique strategy profiles that constitute a fully revealing equilibrium.

Proof of Corollary 1. To support the fully revealing equilibrium, the receiver’s distribu-

tion of actions after an irreconcilable message pair needs to put probability of at least 1
2

on

(left, up), so the out-of-equilibrium beliefs have to assign positive probability on (L,U). We

show that for any sequence εn converging to zero there exists no g = (g1, g2) putting positive

probabilities on all states so that the beliefs induced by equilibrium strategies σ = (σ1, σ2) in

an ε-perturbed game put positive probability on (L,U) as εn → 0. In an ε-perturbed game,

after receiving an irreconcilable message pair the receiver’s belief that the state is (L,U) is

µLU(σ, g, εn) =
1
3
εn1g

RU
1 εn2g

LD
2

1
3
εn1g

RU
1 εn2g

LD
2 + 1

3
εn2g

LD
2 + 1

3
εn1g

RU
1

,

where gHVi is the probability that Sender i observes state (H,V ) in the event of mistake. For

gRU1 > 0 and gLD2 > 0, µLU(σ, g, εn)→ 0 as εn → 0 for any εn converging to zero.

Proof of Corollary 2. Since one can construct equilibria that are free of out-of-equilibrium

beliefs, they are also robust. We provide an example of non-robust fully revealing equilibrium.

Consider an equilibrium in which each sender sends “(left, up)” for state (L,U), “(right, up)”

for (R,U), “(left, down)” for (L,D) and “(right, down)” for (R,D). It suffices to consider one

inconsistent message pair. Suppose the equilibrium is supported by out-of-equilibrium beliefs

that assign probability one to (L,U) after message pair (“(right, down)”, “(right, up)”); the

receiver takes action (left, up), which deters deviations by Sender 1 in state (R,U) and by

Sender 2 in state (R,D). Upon receiving (“(right, down)”, “(right, up)”) in the corresponding

equilibrium in an ε-perturbed game, the receiver’s beliefs that the state is (L,U) is

µLU(σ, g, εn) =
1
4
εn1g

RD
1 εn2g

RU
2

1
4
εn1g

RD
1 εn2g

RU
2 + 1

4
εn1g

RD
1 + 1

4
εn1g

RD
1 εn2g

RU
2 + 1

4
εn2g

RU
2

.

For gRD1 > 0 and gRU2 > 0, µLU(σ, g, εn)→ 0 as εn → 0 for any εn converging to zero.

Proof of Corollary 3. The corollary follows immediately from the fact that any fully re-

vealing equilibrium in Game T′ is free of out-of-equilibrium beliefs.
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Proof of Proposition 5. We first show that Sender 1’s strategy in 1) is a best response to

2) and 3); the case for Sender 2 is symmetric and will be omitted. In state (L,U), given that

Sender 2, honest or strategic, sends “up”, Sender 1 receives 20 from sending the prescribed

“left”. He has no incentive to deviate to send “right” since the receiver will then take (right,

up), which yields him a payoff of 0. Consider next state (R,U) and that Sender 1 sends

“right”. With probability λ, Sender 2 is honest, in which case the receiver takes (right, up).

With probability 1−λ, Sender 2 is strategic and sends “down”, in which case the receiver takes

(right, up) and (left, down) with respective probabilities α and 1 − α. Sender 1’s expected

payoff from sending “right” is thus 20λ+[20α+10(1−α)](1−λ). If Sender 1 sends “left”, with

probability λ the receiver takes (left, up) and with probability 1 − λ the receiver takes (left,

down). Sender 1 thus receives 10(1−λ). Given that 20λ+[20α+10(1−α)](1−λ) ≥ 10(1−λ)

for all λ ∈ (0, 1) and all α ∈ [0, 1], Sender 1 has no incentive to deviate to send “left”. In state

(L,D), the receiver will take (left, down) if Sender 1 sends “left”, yielding him a payoff of 20.

By sending “right”, Sender 1 contributes to induce the receiver to randomize between (right,

up) and (left, down), which brings him an expected payoff of 30α + 20(1 − α). Given that

30α + 20(1− α) ≥ 20 for all α ∈ [0, 1], Sender 1 has no incentive to deviate to send “left”.

We verify next that the receiver’s strategy in 3) constitutes a best response given 1) and 2).

Since the message pair (“left”, “up”) is sent only in state (L,U) when the senders are either

honest or strategic, the receiver’s updated beliefs put probability one on (L,U), and she takes

action (left, up). The message pair (“right”, “up) is sent only in state (R,U) when Sender 2

is honest and Sender 1 is either honest or strategic. Updating beliefs accordingly, the receiver

takes (right, up). Similarly, the receiver takes (left, down) after receiving (“left”, “down”), for

it is sent only in state (L,D) when Sender 1 is honest and Sender 2 is either honest or strategic.

Upon receiving (“right”, “down”), which can only be sent in either state (R,U) or (L,D), the

receiver updates her beliefs that µRU((“right”, “down”)) = [1
3
(1− λ)]/[1

3
(1− λ) + 1

3
(1− λ)] =

1
2

and is indifferent between (right, up) and (left, down). The receiver is thus willing to

randomize with any α ∈ [0, 1]. Finally, since every message pair is expected in equilibrium,

the partially revealing equilibrium constituted by the above strategies is robust.

Appendix B - Translated Instruction for Game T

TASSEL EXPERIMENTAL INSTRUCTION

Experimental Payment
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At the end of the experiment, you will receive a show-up fee of NT$100 plus the NTD

converted from the “Standard Currency Units” you have earned in the experiment. (“Standard

Currency Units” are the experimental currency units used in the experiment.) The amount

of “Standard Currency Units” you will receive, which will be different for each participant,

depends on your decision, the decision of others and some random factor. All earnings are

paid in private and you are not obligated to tell others how much you have earned.

Note: The exchange rate between “Standard Currency Units” and NTD is 2 : 1.

(2 Standard Currency Units = NT$1.)

Experimental Instructions

This is an experiment on group decisions among three individuals. There are 3 practice

rounds and 50 official rounds. Each group consists of three members, Member A, B and C. At

the beginning of the experiment, you will be randomly assigned by the computer to be either

A, B, or C. Once decided, your role remains the same throughout the experiment. However,

at the beginning of each round, the computer will randomly rematch participants to form new

groups; thus, members in your group are not the same each round.

At the beginning of each round, the computer will randomly select the current state out

of four possibilities: (L,U), (R,U), (L,D) and (R,D). Member A and Member B will be

informed about the selected current state (displayed on their screens) but not Member C. In

each round, Member C will have to make a decision, choosing (left, up), (right, up), (left,

down) or (right, down).

Before Member C makes the decision, Member A and Member B will both recommend

“left” or “right” and “up” or “down”. Member A will first recommend “left” or “right” and

then “up” or “down”; Member B will recommend “up” or “down” and then “left” or “right”.

Recommendations will be displayed on Member C’s screen only after all the recommendations

have been made by both Member A and Member B, after which Member C makes the decision.

For example, the decision screen of Member C is displayed here, in which Member A has

recommended “left”, “down” and Member B has recommended “right”, “up”.38

In each round, each member’s earnings depend on the current state and Member C’s

decision, as in the table displayed on the screen. Your earnings are bold in blue and those of

the other two members are in black (italic or underlined). If you are Member A and Member

B, the current state will further be highlighted in red. There are four regions in the table, the

top-left region shows the earnings when the current state is (L,U), and the top-right shows

38The experimental instruction is accompanied by slide illustrations showing screen shot 3 in Appendix C.
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the earnings when the current state is (R,U). Similarly, the bottom-left and the bottom-right

regions show the respective earnings for (L,D) and (R,D). In each of the regions, there are

four cells showing each member’s respective earnings when Member C chooses (left,up), (right,

up), (left, down) or (right, down).

For example, suppose the current state is selected to be (L,U). If Member C’s decision

is (left, up), then she will receive 50 Standard Currency Units, while the other two members

will each receive 20 (top-left cell). On the other hand, if Member C’s decision is (left, down),

then this will only bring her 10 Standard Currency Units, while Member A receives 50 and

Member B receives 0 (bottom-left cell). If Member C chooses (right, up) instead, herself and

Member A will both receive 0, while Member B will receive 50 (top-right cell). Finally, if

Member C chooses (right, down), she will receiver 20 Standard Currency Units, while both

Member A and Member B will receive 10 (bottom-right cell). Similarly for other three states.

At the end of each round, the computer will display results of the round, including the

current staten, Member A’s and Member B’s recommendations, Member C’s decision and

your earnings. Click “Confirm” to proceed to the next round.

Practice Rounds

There are three practice rounds, where the objective is to get you familiar with the com-

puter interface and the earnings calculation. Please note that the practice rounds are

entirely for this purpose, and any earnings in the practice rounds will not con-

tribute to your final payment at all. Once the practice rounds are over, the experimenter

will announce “The official experiment begins now!” after which the official experiment starts.

If you have any questions, please raise your hand. The experimenter will answer your

question individually.

The Official Experiment Begins

The official experiment begins now. There are in total 50 rounds. The Standard Currency

Units you earn in all 50 rounds will be converted into NTD and paid to you according to the

2 : 1 exchange rate (2 Standard Currency Units = NT$1). So, please make your decisions

carefully.
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Appendix C - Behavioral Model for Other Games and

Additional Tables/Figures (Not Intended for Publica-

tion)

C.1 Behavioral Model for Game S, Game T, and Game T′

We show that our behavioral model admits equilibria that have the same informational prop-

erties as the partially/fully revealing equilibria in the strategic model of Game S, Game T

and Game T′. We say that two equilibria are information-equivalent if they result in the same

information partition.

Proposition 6. An equilibrium information-equivalent to all partially revealing equilibria in

the strategic model of Game S exists in the behavioral model for any λ ∈ (0, 1
2
]. An equilibrium

information-equivalent to all fully revealing equilibria in the strategic model of Game T (Game

T ′) exists in the behavioral model for any λ ∈ (0, 1).

Proof. The proofs for Game T and Game T′ are straightforward and omitted. We show that

the following constitutes an equilibrium in the behavioral model of Game S for λ ∈ (0, 1
2
],

in which the receiver receives {{(L,U), (L,D)}, {(R,U), (R,D)}}: 1) the strategic sender

randomizes between “(left, up)” and “(left, down)” with probabilities (1 − 1
2(1−λ) ,

1
2(1−λ)) in

state (L,U) and ( 1
2(1−λ) , 1−

1
2(1−λ)) in (L,D) and randomizes between “(right, up)” and “(right,

down)” with probabilities (1− 1
2(1−λ) ,

1
2(1−λ)) in (R,U) and ( 1

2(1−λ) , 1−
1

2(1−λ)) in (R,D); and

2) the receiver randomizes between (left, up) and (left, down) with probabilities (p, 1− p) for

some p ∈ [0, 1] after receiving “(left, up)” and “(left, down)” and between (right, up) and

(right, down) with probabilities (q, 1− q) for some q ∈ [0, 1] after receiving “(right, up)” and

“(right, down)”.

Upon receiving “(left, up)”, the receiver’s beliefs put zero probability on both states (R,U)

and (R,D) because “(left, up)” is not sent in either state. For state (L,U), we have

µLU(“(left, up)”) =

1
4
(λ+ (1− λ)(1− 1

2(1−λ)))
1
4
(λ+ (1− λ)(1− 1

2(1−λ))) + 1
4
((1− λ) 1

2(1−λ))
=

1

2
.

Similarly, upon receiving “(left, down)”, µLU(“(left, down)”) = µLD(“(left, down)”) = 1
2
. By

a similar argument, upon receiving “(right, up)” or “(right, down)”, the receiver’s beliefs put

zero probability on (L,U) and (L,D) and probability of 1
2

on each of (R,U) and (R,D).

Given these beliefs, the receiver is indifferent between the relevant actions and is thus willing

to randomize with any probabilities p ∈ [0, 1] and q ∈ [0, 1]. It follows from the argument
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in the proof of Proposition 1 that the prescribed randomization for the sender above also

constitutes a best response. The requirement that 1
2(1−λ) ≤ 1 gives λ ≤ 1

2
.

The results for Game T and Game T′ are straightforward. Under the fully revealing

strategy profile in which literal recommendations are sent, the behavior of a strategic sender

is exactly the same as his honest counterpart. The receiver’s best responses will not change

with the presence of honest senders, and so neither will the strategic senders’ best responses.

The key of the equilibrium construction for Game S is that the strategic sender randomizes

on dimension V in a way that provides information “counter-balancing” that provided by the

honest sender, leaving the receiver indifferent between (left, up) and (left, down) and between

(right, up) and (right, down) as in the partially revealing equilibrium of the strategic model.

The randomization probability that achieves this imposes restriction that λ ≤ 1
2
.39

Given that our findings from Game S, Game T and Game T′ are highly consistent with the

respective equilibria of the strategic model, Proposition 6 suggests that the behavioral model

can also explain our findings when λ ∈ (0, 1
2
]. Together with the analysis for Game R Section

4.3, a behavioral model with parameter λ = 1
2

provides a unifying framework for interpreting

our entire findings.

39An equilibrium information-equivalent to all fully revealing equilibria in the strategic model of Game R
also exists in the behavioral model for any λ ∈ (0, 1). Also, for all games, the robustness properties of the
equilibria carry over to the behavioral model.
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C.2 Tables and Figures

Table 6: Random Effect MLE Regressions: Action on Message (top: dimension H; bottom:
dimension V )

(1) (2) (3) (4)
hit hit hit hit

“hit” (Sender 1) 0.978*** 0.975*** 0.979*** –
(0.00695) (0.00887) (0.0128)

“hit”×DGameS
it (Sender 1) – 0.00196 -0.0301 –

(0.0103) (0.0165)
“hit”×DGameT

it (Sender 1) – – -0.0293 –
(0.0167)

“hit”×DGameR
it (Sender 1) – – -0.144*** –

(0.0177)
“hit” (Sender 2) – – – -0.0159

(0.0383)
(1) (2) (4) (5)
vit vit vit vit

“vit” (Sender 1) 0.101** -0.0845* – –
(0.0360) (0.0379)

“vit”×DGameS
it (Sender 1) – 0.178*** – –

(0.0506)
“vit” (Sender 2) – – 0.974*** 0.974***

(0.0127) (0.0134)
“vit”×DGameT

it (Sender 2) – – – -0.0235
(0.0174)

“vit”×DGameR
it (Sender 2) – – – -0.141***

(0.0184)

Game Game S Games All Game T Game T
S, T T′, R

Round Last 30 Last 30 Last 30 Last 30 Last 30
No. of Observations 840 1560 2880 720 2040
No. of Groups 28 52 96 24 68
Note: Standard errors in parentheses; *** for p <0.001, ** for p <0.01, * for p <0.05.
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TASSEL實驗說明 p.1 

實驗報酬 

本實驗結束後，你將得到定額車馬費新台幣 100 元，以及你在實驗中獲得的「法幣」所兌

換成之新台幣。 (「法幣」為本實驗的實驗貨幣單位。) 你在實驗中能獲得的「法幣」會

根據你所做的決策、別人的決策，以及隨機亂數決定，每個人都不同。每個人都會個別獨

自領取報酬，你沒有義務告訴其他人你的報酬多寡。請注意：本實驗中的「法幣」與新台

幣兌換匯率為 2:1。(法幣 2 元=新台幣 1 元) 

實驗說明 

本實驗為三人一組的共同決策實驗，共有三個練習回合與五十回合的正式實驗。每組有成

員甲、成員乙、成員丙三人。在實驗一開始時，電腦會隨機決定你是成員甲、成員乙還是

成員丙。一旦決定之後，你的成員身份在實驗中不會再變動。然而，每回合一開始時，電

腦會將所有人打散重新隨機分組，因此，每次你遇到的成員並非相同。 

 

每回合一開始時，電腦會從下列四種可能性，隨機選取本回合的狀態：（Ｌ，Ｕ），（Ｒ，Ｕ），

（Ｌ，Ｄ）和（Ｒ，Ｄ）。電腦會告知成員甲和成員乙每回合的狀態（顯示在螢幕上），但

不會告知成員丙。每回合成員丙都必須做一個決定：「左上」、「右上」、「左下」或「右下」。 

 

在成員丙做決定之前，成員甲和成員乙要分別建議選擇「左」或「右」與「上」或「下」。

成員甲會先建議「左」或「右」，然後才建議「上」或「下」，成員乙則會先建議「上」或

「下」，然後才建議「左」或「右」。當成員甲和成員乙的所有建議都完成之後，才會一次

全部顯示在成員丙的螢幕上，然後成員丙才做決定。舉例來說，螢幕上顯示的是成員丙做

決定的畫面，成員甲建議了「左」、「下」，成員乙建議了「右」、「上」。 

 

每個成員的報酬取決於本回合的狀態與成員丙的決定，如螢幕上的附表所顯示。其中，你

的報酬顯示為藍色粗體，其他成員的報酬則顯示為黑色斜體或黑色加底線。如果你是成員

甲或成員乙，本回合的狀態會以紅色字體標示。表上有四個區域，左上的區域顯示狀態為

（Ｌ，Ｕ）時的報酬表。右上的區域則顯示狀態為（Ｒ，Ｕ）時的報酬表。同理，左下和

右下區域分別顯示狀態為（Ｌ，Ｄ）和（Ｒ，Ｄ）的報酬表。在每個區域的報酬表中均有

四個方格，對應到的是該狀態下，當成員丙選取「左上」、「右上」、「左下」或「右下」的

時候，每位成員各自的報酬。  
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舉例來說，當本回合的狀態為（Ｌ，Ｕ）時，成員丙的決定如果是「左上」，他自己會得到

法幣 50 元的報酬，另外兩位成員則各得法幣 20 元（左上方格）。但是若成員丙的決定是「左

下」，則只能帶給他自己法幣 10 元的報酬，成員甲則獲得法幣 50 元，成員乙獲得法幣 0 元

（左下方格）。相反地，若成員丙的決定是「右上」，他自己和成員甲均會得到法幣 0 元，

成員乙則獲得法幣 50 元（右上方格）。最後，成員丙的決定若是「右下」，他自己能獲得法

幣 20 元，成員甲與成員乙則各獲得法幣 10 元（右下方格）。其他狀態依此類推。 

 

每回合結束後，螢幕上會顯示這回合的實驗結果，包括本回合的狀態、成員甲和成員乙的

建議選擇、成員丙的決定，以及你所獲得的報酬。按「確認」進入下一回合。 

 

練習階段 

此階段共有三回合，目的為幫助您熟悉正式實驗的操作介面及計分方式。請注意，練習階

段的得分僅供您熟悉本實驗的進行方式，與您最後的現金報酬無關。練習結束後，實驗者

會宣佈「實驗正式開始！」，然後才進入正式實驗。 

 

如果您對本實驗有任何疑問，請在此時舉手。實驗者會過來解答。 

 

實驗正式開始 

現在實驗正式開始，一共有五十回合！在正式實驗中所獲得的「法幣」都會在實驗結束後，

按照 2:1 的匯率 (法幣 2 元=新台幣 1 元) 兌換成新台幣付給您。因此請慎重選擇、慎重決

定。 

                                                                                 

 

 

 



 

 

 



 

 

 


