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1 The Partition Model

1.1 Information partition and knowledge operator

Let Ω be a finite set of states. A model of information structure for n agents consists of

a common prior µ ∈ ∆(Ω) and a knowledge operator Ki : P(Ω) → P(Ω) for each agent

i = 1, ..., n. Ki is a knowledge operator if it satisfies the following properties:

(K1) Ki(E) ⊆ E.

(K2) E ⊆ F implies that Ki(E) ⊆ Ki(F ).
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(K3) ∼ Ki(E) ⊆ Ki(∼ Ki(E)).

Given the knowledge operator Ki, define the knowledge ufield Ki as

Ki = {KiE : E ⊆ Ω}.

A different approach is to define information partition Ii : Ω→ P(Ω) such that

(I1) for all ω ∈ Ω, ω ∈ Ii(ω);

(I2) for all ω, ω′ ∈ Ω, either Ii(ω) = Ii(ω
′) or Ii(ω) ∩ Ii(ω′) = ∅.

In this approach, the knowledge ufield is defined as

Ki = {
⋃
ω∈A

I(ω) : A ⊆ Ω}.

These two approaches are equivalent in the following sense: one can either take Ii

as primitive and define Ki(E) = {ω : I(ω) ⊆ E}, or take Ki as primitive and define

Ii(ω) =∼ Ki(∼ {ω}).

Lemma 1.1. (1) Let Ii be an information partition. Define Ki(E) = {ω : I(ω) ⊆ E}.

Then Ki satisfies (K1-K3).

(2) Let Ki be a knowledge operator. Define Ii(ω) =∼ Ki(∼ {ω}). Then Ii satisfies (I1-I2)

and Ki(E) = {ω : Ii(ω) ⊂ E} for any event E.

Proof. (1) (K1) ω ∈ Ki(E) only if ω ∈ Ii(ω) ⊆ E.

(K2) ω ∈ Ki(E) only if ω ∈ Ii(ω) ⊆ E ⊆ F and so ω ∈ Ki(F ).

(K3) Suppose that ω /∈ Ki(E). Then Ii(ω)∩ ∼ E 6= ∅. Hence, for all ω′ ∈ Ii(ω),

ω′ /∈ Ki(E), and so Ii(ω) ⊆∼ Ki(E). Thus, ω ∈ Ki(∼ Ki(E)).

(2) (I1) By (K1), Ki(∼ {ω}) ⊆∼ {ω} and so ω ∈∼ Ki(∼ {ω}) = Ii(ω).

(I2) Define Ki = {KiE : E ⊆ Ω}. Then we have the following two claims: (a) Ii(ω) ∈ Ki;

(b) Ii(ω) =
⋂
{F ∈ Ki : ω ∈ F}.

(a) By (K1) and (K3), Ii(ω) = Ki(∼ Ki(∼ {ω})) and hence Ii(ω) ∈ Ki.
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(b) Suppose that ω ∈ F ∈ Ki. Then F = KiE for some E. So ∼ KiE =∼ F ⊆∼ {ω}.

By (K3) and (K2), ∼ Ki(E) = Ki(∼ Ki(E)) ⊆ Ki(∼ {ω}). Then, Ii(ω) =∼ Ki(∼ {ω}) ⊆

Ki(E) = F . Thus, Ii(ω) ⊆
⋂
{F ∈ Ki : ω ∈ F}. On the other hand, by (I1) and (a),

ω ∈ Ii(ω) ∈ Ki and hence
⋂
{F ∈ Ki : ω ∈ F} ⊆ Ii(ω).

Let ω, ω′ ∈ Ω. To show (I2), consider two cases: (i) for each F ∈ Ki, ω ∈ F if and

only if ω′ ∈ F ; (ii) for some F ∈ Ki, ω ∈ F and ω′ /∈ F . If (i) is true, then by claim (b)

above, Ii(ω) = Ii(ω
′). If case (ii) is true, then Ii(ω)∩ Ii(ω′) = ∅ because ∼ F ∈ Ki as well

by (K1) and (K3).

Finally, we show that Ki(E) = {ω ∈ Ω : Ii(ω) ⊆ E}. First assume that Ii(ω) ⊆ E.

By (K2) Ki(Ii(ω)) ⊆ Ki(E) and by (K3) Ii(ω) ⊆ Ki(Ii(ω)) and hence Ii(ω) ⊆ Ki(E). On

the other hand, if ω ∈ Ki(E), then by claim (b) above Ii(ω) ⊆ Ki(E).

Lemma 1.2. Suppose that Ki satisfies (K1-K3). Then

(1) for any collection of events {Eα : α ∈ A},
⋂
α∈AKi(Eα) = Ki(

⋂
α∈AEα);

(2) for any event E, Ki(Ki(E)) = Ki(E).

Proof. (1) Because
⋂
α∈AEα ⊆ Eα, (K2) implies that Ki(

⋂
α∈AEα) ⊆

⋂
α∈AKi(Eα).

On the other hand, if ω ∈
⋂
α∈AKi(Eα), then Ii(ω) ⊆ Eα for all α, and hence ω ∈

Ki(
⋂
α∈AEα).

(2) By (K1) and (K3) ∼ Ki(E) = Ki(∼ Ki(E)) and hence Ki(E) =∼ Ki(∼ Ki(E)).

Therefore, Ki(Ki(E)) = Ki(∼ Ki(∼ Ki(E))) =∼ Ki(∼ Ki(E)) = Ki(E).

1.2 Common knowledge

Now we turn to common knowledge. Define Km : P(Ω) → P(Ω) inductively as follows:

K1(E) =
⋂n
i=1Ki(E); for m > 1, Km(E) =

⋂n
i=1Ki(K

m−1(E)). Km is the mth order

knowledge operator. The common knowledge operator, CK, is defined as CK(E) =⋂
m∈NK

m(E).

Lemma 1.3. For each i, Ki(CK(E)) = CK(E). Moreover, CK(E) ⊆ E and, if E ⊆ F ,

CK(E) ⊆ CK(F ).

3



Proof. By (K1) Ki(CK(E)) ⊆ CK(E). On the other hand, by Lemma 1.2,

CK(E) =
⋂
m∈N

Km(E) ⊆
⋂
m≥2

Km(E)

=
⋂
m∈N

K1(Km(E)) ⊆
⋂
m∈N

Ki(K
m(E)) = Ki(

⋂
m∈N

Km(E)) = Ki(CK(E)).

Ki(E) ⊆ E for all i and hence CK(E) ⊆ Ki(E) ⊆ E. Suppose that E ⊆ F . Then for

each m, Km(E) ⊆ Km(F ) for all m ∈ N. Hence CK(E) ⊆ CK(F ).

An event F is self-evident if F ⊆ Ki(F ) for all i = 1, ..., n.

Lemma 1.4. An event F is self-evident if and only if F ∈
⋂
i=1,...,nKi.

Proof. Suppose that F is self-evident. Then by (K1) F = Ki(F ) for all i = 1, ..., n

and hence F ∈
⋂
i=1,...,nKi. Conversely, if F ∈

⋂
i=1,...,nKi, then F = Ki(F ) for each

i = 1, ..., n and so F is self-evident.

Self-evidence is closely related to common knowledge: Lemma 1.3 shows that the event

CK(E) is self-evident; the following theorem shows that the event CK(E) is the largest

self-evident event included in E. Let K =
⋂
i=1,...,nKi.

Theorem 1.1. CK(E) is the largest self-evident subset of E.

Proof. Suppose that F ⊆ E and F ∈ K. Then F ⊆ K1(E). We show, by induction, that

F ⊆ Km(E). Suppose that F ⊆ Km(E). Then by (K2), F = Ki(F ) ⊆ Ki(K
m(E)) for

each i = 1, ..., n. Thus, F ⊆ Km+1(E). Therefore, F ⊆ CK(E). On the other hand,

CK(E) is also self-evident.

For each i = 1, ..., n, Ki is closed under union (Lemma 1.2) and complementation (by

(K1) and (K3)) and Ki is defined by Ki(E) =
⋃
{F ∈ Ki : F ⊆ E}. It is easy to show that

this defines a knowledge operator. Now, K is also a universal field, i.e., it is closed under

complementation and union, and hence CK is also a knowledge operator by Theorem 1.1.
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1.3 Agreeing to Disagree

Consider information partitions {Ii : i = 1, ..., n} on a state space Ω and a prior distri-

bution µ ∈ ∆(Ω). For any event E, agent i’s a posterior probability on E at state ω is

µ(E|Ii(ω)).

Theorem 1.2 (Aumann (1976)). Let E ⊆ Ω be an event. If it is common knowledge at

ω that µ(E|Ii(ω)) = pi for all i = 1, .., n, then p1 = p2 = ... = pn.

Proof. Let F = {ω : µ(E|Ii(ω)) = pi, i = 1, ..., n} and let F ∗ = CK(F ). Then F ∗ ⊆ F

and F ∗ = Ki(F
∗) for all i. For each i, F ∗ =

⋃
{Ii(ω) : ω ∈ F ∗}. Fix some i. Because

F ∗ ⊆ F , for each ω ∈ F ∗, µ(E|Ii(ω)) = pi. Thus,

µ(E|
⋃
{Ii(ω) : ω ∈ F ∗}) = pi and so µ(E|F ∗) = pi.

Therefore, p1 = p2 = ... = pn.

1.4 The Harsanyi’s doctrine and the CPA

In the previous sections players’ priors are exogenously given. Savage (1954) formulates a

axiomatic framework for subjective probability. However, that approach only asserts that

a coherent decision-making in the face of uncertainty requires the use of a probability

distribution, but does not provide a theory about how such a probability is derived.

Nonetheless, for a given prior distribution, the Savage theory does give a procedure for

updating the probabilistic belief when new information arrives, namely, the Bayes’ rule.

Harsanyi supplements the gap by asserting the existence of a universal prior before

any information. That universal prior is the common prior. A corollary of this doctrine

is that difference in probabilistic beliefs reflects difference in information only.
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2 Epistemic Conditions

2.1 Correlated Equilibrium

Let G = 〈{Si}ni=1, {ui}ni=1〉 be a finite n-person game. Consider an information structure

〈Ω, {Ii}ni=1, µ〉. A strategy for agent i is a function σi : Ω → Si that is measurable w.r.t.

Ii. A correlated equilibrium is a list of strategies (σ1, ...σn) such that for each i = 1, .., n,

and for each strategy τi,∑
ω∈Ω

µ(ω)ui(σi(ω);σ−i(ω)) ≥
∑
ω∈Ω

µ(ω)ui(τi(ω);σ−i(ω)).

A correlated equilibrium σ generates a distribution π ∈ ∆(S1 × .... × Sn) as follows: for

each s ∈ S = S1 × S2 × ...× Sn,

π(s) = µ({ω ∈ Ω : (∀i = 1, .., n)σi(ω) = si}).

Lemma 2.1. A distribution of actions π ∈ ∆(S) is generated by a correlated equilibrium

if and only if for each i = 1, ..., n, and for each si such that π(si) > 0 and for each s′i ∈ Si,∑
s−i∈S−i

π(s−i|si)u(si, s−i) ≥
∑

s−i∈S−i

π(s−i|si)u(s′i, s−i).

A easy corollary of this lemma is that any Nash equilibrium in mixed strategies is also

a correlated equilibrium. In fact, in terms of payoffs, correlated equilibria correspond to

the convex haul of Nash equilibria.

Lemma 2.2. Suppose that π1 and π2 are two distributions on actions that are generated

by some correlated equilibria of G. Then απ1 + (1− α)π2 is also a distribution generated

by some correlated equilibrium of G.

Aumann (1987) shows that correlated equilibrium is consistent with common knowl-

edge of rationality, in terms of expected utility maximization. Let 〈Ω, {Ii}ni=1, µ〉 be an

information structure. Let si : Ω→ Si be the function that assigns an action at each state.

Agent i is said to be rational at state ω if si(ω) maximizes his expected utility against
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his posterior belief on Ω. The common prior µ and the assignments {si}ni=1 generate a

distribution π ∈ ∆(S) given by

π(s) = µ({ω ∈ Ω : (∀i = 1, ..., n)si(ω) = si}.

Theorem 2.1 (Aumann, 1987). Suppose that each agent is rational at every state. Then

the generated distribution π from the state space is a distribution generated by some cor-

related equilibrium.

2.2 Type space and Nash equilibrium

Now we turn to Nash equilibrium. To study this we also introduce type spaces. A type

space is a list 〈{Ti}ni=1, {µi}ni=1〉 in which for each i = 1, ..., n, µi : Ti → ∆(
∏

j 6=i Tj). We

say that there is a common prior µ if for each i and for each ti ∈ Ti, µi(ti)(t−i) = µ(t−i|ti)

whenever µ[ti] > 0. For any event E ⊆ T , define

Bi(E) = {t ∈ T : µi(ti)(E
ti) = 1},

where Eti = {t−i ∈ T−i : (ti, t−i) ∈ E}. Then we define Bm inductively as follows:

B1(E) =
⋂n
i=1Bi(E); for m > 1, Bm(E) =

⋂n
i=1 Bi(B

m−1(E)). The common belief

operator CB is defined as CB(E) =
⋂∞
m=1B

m(E).

Given a game G = 〈{Si}ni=1, {ui}ni=1〉, let si : Ti → Si be a function that assigns

each type ti an action. Given the assignments {si}ni=1, agent i’s conjecture at state t is

φi(t) ∈ ∆(S−i) given by

φi(ti)(s−i) = µi(ti)({t−i ∈ T−i : s−i(t−i) = s−i}).

Agent i is rational at state t if si(t) maximizes the expected payoffs against the conjecture

φi(t).

Lemma 2.3. Let s ∈ S. Suppose that at state t, it is mutual knowledge that all agents

are rational, and the action profile is s. Then s is a Nash equilibrium.

Theorem 2.2 (Aumann and Brandenburger, 1995, Theorem A). Suppose that n = 2. Let

ϕi ∈ ∆(S−i), i = 1, 2, be two conjectures. Suppose that at state t∗, it is mutually believed

7



that both agents are rational, and that the conjectures are given by (ϕ1, ϕ2). Then, (ϕ2, ϕ1)

is a Nash equilibrium.

Theorem 2.3 (Aumann and Brandenburger, 1995, Theorem B). Let ϕi ∈ ∆(S−i), i =

1, ..., n, be a profile of conjectures. Suppose that agents have a common prior µ ∈ ∆(Ω),

which assigns positive probability to it being mutually believed that both agents are rational,

and commonly believed that the conjectures are given by (ϕ1, ..., ϕn). Then, for all j, all

conjectures ϕi with j 6= i induce the same conjecture σj about j, and (σ1, ..., σn) is a Nash

equilibrium.

2.3 Rationalizability

Rationalizable set

Consider a normal-form game with complete information:

G := (I, {Si}i∈I , {ui}i∈I) ,

where I denotes a finite set of players, Si is the strategy set for player i (as usual, S =∏
i∈I Si), and ui : S → < denotes the payoff function for player i.

Definition 2.1. The (correlated) rationalizable set R(G) is defined as
⋂
n∈N Λn(S),

where Λi(S
′) := {si ∈ Si : there exists µ ∈ ∆(S−i) such that µ(S ′−i) = 1 and si ∈ BRi(µ)}

for any Borel subset S ′ =
∏

i∈I S
′
i ⊆ S and Λ(S ′) :=

∏
i∈I Λi(S

′); Λ0(S) := Λ(S), and

Λn+1(S) := Λ(Λn(S)) is defined inductively for n ≥ 0. .

Theorem 2.4. Suppose that in game G, S is compact.

(a) Λn+1(S) ⊆ Λn(S), for all n ≥ 0.

(b) Λ(R(G)) = R(G).

Proof. (a) When n = 0, since si ∈ Λp,1
i (S) implies that for some µi, si ∈ BRi(µi),

si ∈ Λp,0
i (S) = Λ1

i (S). Suppose that Λp,k+1(S) ⊆ Λp,k(S), for all k < n. Let si ∈ Λp,n+1.

Then there exists µi such that µi(Λ
p,n
−i ) ≥ p and si ∈ BRi(µi). By induction hypothesis,

Λp,n(S) ⊆ Λp,n−1(S), and so µi(Λ
p,n−1(S)) ≥ µi(Λ

p,n(S)) ≥ p. Thus, si ∈ Λp,n
i (S).
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(b) Let si ∈ Λp
i (R

p(G)). Then, there exists µi such that µi(R
p
−i(G)) ≥ p and si ∈

BRi(µi). Since for each n, Rp(G) ⊆ Λp,n(S), µi(Λ
p,n
−i (S)) ≥ p. Thus, si ∈ Rp(G).

Conversely, let si ∈ Rp(G). Thus, for each n, there exists µni such that µni (Λp,n
−i (S)) ≥ p

and si ∈ BRi(µ
n
i ). Then, since ∆(S−i) is compact, there is a subsequence µki which

converges (weakly) to µi. For each k0, µki (Λ
p,k0
−i (S)) ≥ p for all k > k0 by (a). Thus,

µi(Λ
p,k0
−i (S)) ≥ lim supµki (Λ

p,k0
−i (S))) ≥ p. Since Rp(G) = limn Λp,n(S), µi(R

p
−i(G)) =

limn µi(Λ
k,n
−i (S)) ≥ p. Therefore, si ∈ Λp

i (R
p(G)).

Property (b) is known as the best-response-property, which is given by [11] for ratio-

nalizable sets.

Universal type space and epistemic conditions for rationalizability

For any topological space A, let ∆(A) be the set of all probability measures on the

Borel subsets of A, equipped with the weak* topology. If the underlying space is compact

and metric, then so is the set of all probability measures over its Borel sets.

Now we provide the hierarchies of beliefs associated with G. Let X0
i := S−i be the first-

order uncertainty of player i and so ∆(S−i) is the set of i’s first-order beliefs. Inductively

define the nth-order uncertainties Xn
i as Xn

i := Xn−1
i ×

∏
j 6=i ∆(Xn−1

j ) and thus the set of

i’s nth-order beliefs is ∆(Xn
i ), for all n ≥ 1. It is implicitly assumed here that every player

is certain of his own strategic choice and this fact is common certainty among players∗.

By a type of player i we mean an element ti ∈ T 0
i :=

∏∞
n=0 ∆(Xn

i ), which describes

player i’s beliefs over all possible uncertainties. A type ti = (δ0
i , δ

1
i , ...) is coherent if for

all n ∈ N, margXn−1
i

δni = δn−1
i . By coherence we mean that any lower-order belief of a

type can be derived from the beliefs of higher orders. Merterns and Zamir (1985) shows

that there is a homeomorphism ϕi : T 1
i → ∆(S−i × T 0

−i) for each i ∈ I, where T 1
i is the

set of coherent types. Then define T ni := {ti ∈ T 1
i : ϕi(ti)(S−i × T n−1

−i ) = 1} inductively

for all n ≥ 2. Let Ti =
⋂∞
n=1 T

n
i . Then ϕi restricted to Ti is a homeomorphism between

∗One may, however, construct a universal type space with S as the first-order uncertainty and then

assume that it is common certainty that every one is certain of his own strategy, but the two approaches

are essentially equivalent.
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Ti and ∆(S−i × T−i) such that margXn
i
ϕi(ti) = δni for all n ≥ 0, where ti = (δ0

i , δ
1
i , ...).

The existence of a homeomorphism is regarded as the universality of the universal type

space T .

One can also characterize the set Ti in terms of finite-order beliefs. Let C1
i := {ti ∈

T 0
i : margX0

i
δ1
i = δ0

i }. The set C1
i consists of the types for which player i’s second-

order and first-order beliefs are coherent. Define Cn
i := {ti ∈ Cn−1

i : margXn
i
δni = δn−1

i

and δni (ProjXn
i
S−i × Cn−1

−i ) = 1} inductively for all n ≥ 2. The set Cn
i then consists

of the types where player i is certain that other players’ beliefs up to the nth-order are

coherent and his own beliefs up to the n + 1th order are coherent. By construction,

Proj∆(X0
i )×...×∆(Xn

i )C
n+1
i = Cn

i for all n > 0. The following lemma is the formal charac-

terization.

Lemma 2.4. For all i ∈ I, Ti =
⋂∞
n=1C

n
i .

Proof. By comparing the definitions, we have T ni ⊆ Cn
i . We show that

⋂∞
n=1 C

n
i ⊆ Ti

for all i ∈ I in the following. Let ti ∈
⋂∞
n=1 C

n
i . Clearly, ti ∈ T 1

i . We shall show that

ϕi(ti)((ProjXn
i
S−i× T 1

−i)×
∏∞

k=n(
∏

j 6=i ∆(Xk
j ))) = 1 for all n by mathematical induction.

Now we have Proj∆(X0
i )×...×∆(Xn

i ) C
n
i ⊆ Proj∆(X0

i )×...×∆(Xn
i ) T

1
i for all n ∈ N. Since

ti ∈ Cn+1
i , ϕi(ti)((ProjXn

i
S−i×T 1

−i)×
∏∞

k=n(
∏

j 6=i ∆(Xk
j ))) ≥ ϕi(ti)((ProjXn

i
S−i×Cn

−i)×∏∞
k=n(

∏
j 6=i ∆(Xk

j ))) = 1. Thus, by continuity of probability measures, ϕi(ti)(S−i×T 1
−i) =

1, i.e., ti ∈ T 2
i . We show by induction that ti ∈ Tmi for all m. Suppose that

⋂∞
n=1C

n
i ⊆ Tmi

for some m ≥ 2. It follows that Proj∆(X0
i )×...×∆(Xn

i ) C
n
i ⊆ Proj∆(X0

i )×...×∆(Xn
i ) T

m
i for

all n ∈ N. If ti ∈
⋂∞
n=1 C

n
i , then ϕi(ti)((ProjXn

i
S−i × Tm−i) ×

∏∞
k=n(

∏
j 6=i ∆(Xk

j ))) ≥

ϕi(ti)((ProjXn
i
S−i × Cn

−i)×
∏∞

k=n(
∏

j 6=i ∆(Xk
j ))) = 1 for all n. Thus, ti ∈ Tm+1

i .

This lemma is convenient in constructing a type from finite-order beliefs, and it will

be used in our main result.

Define Ω :=
∏

i∈I(Si × Ti) to be the state space. Each state describes the beliefs and

strategic choices of all players, and the state space is a full description of all possible

situations. In what follows, we use also si and ti to denote the projections from Ω into
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Si and Ti, respectively. A subset of Ω is then regarded as a proposition for the situation,

and is called an event. However, since this paper is concerned with probabilistic beliefs,

events are confined to be measurable subsets with respect to the Borel σ-algebra on Ω.

In the state space, we can formulate rationality, certainty, common certainty, p-belief,

and common p-belief in an explicit manner. A player is said to be rational in a game

situation if the player chooses a strategy that maximizes the expected utility with respect

to a probabilistic belief over the opponents’ strategic choices.

A type for one player is certain of an event if the type assigns probability 1 over the

event, and then the set of all types that have certainty over that is itself an event. We

close this section by formally defining some notions that will be useful later.

� Player i is rational — Ri := {ω ∈ Ω : si(ω) ∈ BRi(δ
0
i ), with ti(ω) = (δ0

i , ..., δ
n
i , ...)},

where BRi(µ) := arg maxsi∈Si

∫
S−i

ui(s) dµ(s−i) for µ ∈ ∆(S−i), i.e., the best response

correspondence for player i.

� Every player is rational — R :=
⋂
i∈I Ri.

� The belief operator for player i — Bi(E) := {ω ∈ Ω : ϕi(ti(ω))(Eωi) = 1} for any

event E on Ω, where Eωi := {ω−i ∈ Ω−i : (ωi, ω−i) ∈ E}.

� The mutual belief operator — BE :=
⋂
i∈I BiE, for any event E on Ω.

� For any event E on Ω, let B1E := BE, and then inductively define Bn+1E := B(BnE)

for n > 1.

� The common belief operator — CBE :=
⋂
n∈NB

nE for any event E on Ω.

Theorem 2.5 (Tan and Werlang, 1988). A strategy profile s in G is rationalizable if and

only if there exists a state ω = (s, t) ∈ CB(R).
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