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1 2-person 0-sum games

1.1 2-Person Normal Form Games

A 2-person normal form game is given as a triple:

G = (N, {Si}i∈N , {hi}i∈N),

where

(1): N = {1, 2}− the set of players;

(2): Si = {si1, ..., si`i} − the set of pure strategies for player i = 1, 2;

(3): hi : S1 × S2 → R − the payoff function of player i = 1, 2.
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A 2-person normal form game G = (N, {Si}i∈N , {hi}i∈N) is often described by a matrix

form:

Prisoner’s Dilemma Matching Pennies

s21 s22

s11 (5, 5) (1, 6)

s12 (6, 1) (3, 3)

s21 s22

s11 (1,−1) (−1, 1)

s12 (−1, 1) (1,−1)

We say that a 2-person game is zero-sum iff

h1(s1, s2) + h2(s1, s2) = 0 for all (s1, s2) ∈ S1 × S2. (1)

Observation. Suppose that h1(s1, s2) + h2(s1, s2) = 0 for all (s1, s2) ∈ S1 × S2 and

suppose that h1 and h2 represent the preference relation %1 and %2 on ∆(S1×S2). Then

for any p, q ∈ ∆(S1 × S2), p %1 q if and only if q %2 p.

1.2 Maximin Decision Criterion

We consider the individual decision making criterion for player i called the maximin

decision criterion. It has two steps:

(1): Player i evaluates each of his strategies by its worst possible payoff;

(2): Player i maximizes the evaluation by controlling his strategies.

These two steps are formulated mathematically as follows. Let i = 1.

(1∗): for each s1 ∈ S1, the evaluation of s1 is defined by mins2 h1(s1, s2);

(2∗): Player 1 maximizes mins2 h1(s1, s2) by controlling s1.

These two steps are expressed by

max
s1∈S1

min
s2∈S2

h1(s1, s2) = max
s1∈S1

( min
s2∈S2

h1(s1, s2)). (2)
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We say that s∗1 is a maximin strategy iff it is a solution of (2).

Example 1: Consider the following zero-sum game:

s21 s22 mins2 h1(s1, s2)

s11 (5,−5) (4,−4) 4

s12 (3,−3) (6,−6) 3

mins1 h2(s1, s2) ? ?

When the zero-sum condition (1) holds, the maximization of h1 is equivalent to the

minimization of h2, i.e.,

h1(s1, s2)→ max
s1

⇐⇒ h2(s1, s2)→ min
s1

(3)

and the minimization of h1 is equivalent to the maximization of h2, i.e.,

h1(s1, s2)→ min
s2

⇐⇒ h2(s1, s2)→ max
s2

. (4)

By (3) and (4), the maximin decision criterion for player 2 will be formulated as follows:

(1∗-2): for each s2 ∈ S2, the evaluation of s2 is defined by maxs1 h1(s1, s2);

(2∗-2): Player 2 minimizes maxs1 h1(s1, s2) by controlling s2.

These two steps are expressed by

min
s2∈S2

max
s1∈S1

h1(s1, s2) = min
s2∈S2

(max
s1∈S1

h1(s1, s2)). (5)

Lemma 1.1. maxs1∈S1 mins2∈S2 h1(s1, s2) ≤ mins2∈S2 maxs1∈S1 h1(s1, s2).

Proof. . Let t1 ∈ S1 and t2 ∈ S2 be arbitrary strategies for players 1 and 2. First, we have

h1(t1, t2) ≤ max
s1∈S1

h1(s1, t2)

Looking at the latter inequality, we have

min
s2∈S2

h1(t1, s2) ≤ min
s2∈S2

max
s1∈S1

h1(s1, s2).
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Since the right-hand side is constant, we have

max
s1∈S1

min
s2∈S2

h1(s1, s2) ≤ min
s2∈S2

max
s1∈S1

h1(s1, s2).

In the following example, the assertion of Lemma 1.1 holds in inequality.

Example 1.1. : Consider the zero-sum game:

s21 s22 mins2 h1(s1, s2)

s11 5 (−5) 3 (−3) 3

s12 2 (−2) 6 (−6) 2

maxs1 mins2 h1(s1, s2) = 3

maxs1 h1(s1, s2) 5 6 mins2 maxs1 h1(s1, s2) = 5

In the following example, the assertion of Lemma 1.1 holds in equality.

Example 1.2. : Consider the zero-sum game:

s21 s22 mins2 h1(s1, s2)

s11 5 3 3

s12 6 4 4

maxs1 mins2 h1(s1, s2) = 4

maxs1 h1(s1, s2) 6 4 mins2 maxs1 h1(s1, s2) = 4

Example 1.3. : The Scissors-Rock-Paper is formulated as follows:

Sc Ro Pa

Sc 0 −1 1

Ro 1 0 −1

Pa −1 1 0
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Calculate the maximin value and minimax value.

1.3 Strictly Determined Games

Definition 1.1. We say that a 2-person zero-sum game G = (N, {Si}i∈N , {hi}i∈N) is

strictly determined iff

max
s1∈S1

min
s2∈S2

h1(s1, s2) = min
s2∈S2

max
s1∈S1

h1(s1, s2). (6)

In fact, the equation (6) is related to some concept of an equilibrium. In a 2-person

zero-sum game, it is the saddle point, but in general, it is the Nash equilibrium.

Definition 1.2. Let G = (N, {Si}i∈N , {hi}i∈N) be a 2-person normal form game. We say

that (s∗1, s
∗
2) is a saddle point with respect to h1 iff for all s1 ∈ S1 and s2 ∈ S2

h1(s1, s
∗
2) ≤ h1(s

∗
1, s
∗
2) ≤ h1(s

∗
1, s2). (7)

In fact, this coincidence of having a saddle point and (6) is not mere accidental, as it can

be easily verified in previous examples. We have the following theorem.

Theorem 1.1. (1): A 2-person game G has a saddle point if and only if (6) holds.

(2): Suppose that G has a saddle point. Then a pair (s∗1, s
∗
2) of strategies is a saddle point

if and only if s∗1 and s∗2 are maximin strategies for players 1 and 2, respectively.

Proof. We prove the Only-If part and If part of (1). These are also proofs of the Only-If

part and If part of (2).

(1)(Only-If ): Let (s∗1, s
∗
2) be a saddle point of gameG. Then, h1(s

∗
1, s
∗
2) = maxs1 h1(s1, s

∗
2) =

mins2 h1(s
∗
1, s2) by (7). Consider mins2 maxs1 h1(s1, s

∗
2). Then, mins2 maxs1 h1(s1, s

∗
2) ≤

h1(s
∗
1, s
∗
2). Similarly, we have maxs1 mins2 h1(s1, s

∗
2) ≥ h1(s

∗
1, s
∗
2). By Lemma 1.1, we have

(6).

(If ): Suppose that (6) holds. Let s∗1 and s∗2 be maximin strategies for players 1 and

2. By (6), we have

max
s1

h1(s1, s
∗
2) = min

s2
max
s1

h1(s1, s2) = max
s1

min
s2

h1(s1, s2) = min
s2

h1(s
∗
1, s2)
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If h1(s
∗
1, s
∗
2) ≤ maxs1 h1(s1, s

∗
2) and mins2 h1(s

∗
1, s2) ≤ h1(s

∗
1, s
∗
2), we have maxs1 h1(s1, s

∗
2) ≤

h1(s
∗
1, s
∗
2) ≤ mins2 h1(s

∗
1, s2). This implies (7).

The concept of a saddle point is, in fact, equivalent to the concept of a Nash equilib-

rium. We say that a strategy pair (s∗1, s
∗
2) is a Nash equilibrium iff

h1(s1, s
∗
2) ≤ h1(s

∗
1, s
∗
2)for all s1 ∈ S1, (8)

h2(s
∗
1, s2) ≤ h2(s

∗
1, s
∗
2)for all s2 ∈ S2.

We have the following theorem on the relationship between the saddle point and Nash

equilibrium.

Theorem 1.2. Let G = (N, {Si}i∈N , {hi}i∈N) be a zero-sum two-person game. A pair

(s∗1, s
∗
2) of strategies is a saddle point for h1 if and only if (s∗1, s

∗
2) is a Nash equilibrium in

G.

Proof. The first half of (8) is the same as the first half of (7). Hence, it suffices to compare

the latter half of (8) with that of (7). By the zero-sum condition (1), the latter half of

(8) is rewritten as

−h1(s∗1, s2) ≤ −h1(s∗1, s∗2)for all s2 ∈ S2.

This is equivalent to

h1(s
∗
1, s
∗
2) ≤ h1(s

∗
1, s2) for all s2 ∈ S2.

This is the latter half of (7).

As we have seen, a saddle point may not exist. von Neumann (1928) introduces mixed

strategies and extend a finite normal form game to include those strategies. Formally, for

a given normal-form game G = 〈N, {Si}i∈N , {hi}i∈N〉, the mixed extension, denoted by

Ĝ, is the triple 〈N, {Mi}i∈N , {hi}i∈N〉 such that Mi = ∆(Si) for each i = 1, 2 and hi is the

von Neumann-Morgenstern expected utility indices over ∆(S1×S2). For 0-sum games, it

turns out that the game Ĝ always has a saddle point.
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Theorem 1.3. Let Ĝ be the mixed extension of a 2-person 0-sum game G. Then,

max
m1∈M1

min
m2∈M2

h1(m1,m2) = min
m2∈M2

max
m1∈M1

h1(m1,m2). (9)

It is easy to verify that both Theorem 1.1 and Theorem 1.2 hold for the game Ĝ.

Hence, Theorem 1.3 is equivalent to the existence of a saddle point.

Theorem 1.4. Let E(Ĝ) be the set of saddle points of the mixed extension Ĝ, and let

Ei(Ĝ) = ProjSi
E(Ĝ) for i = 1, 2. Then E(Ĝ) = E1(Ĝ) × E2(Ĝ) and each Ei(Ĝ) is a

convex set.

Proof. We show that if m∗1 solves

max
m1∈M1

min
m2∈M2

h1(m1,m2)

and m∗2 solves

min
m2∈M2

max
m1∈M1

h1(m1,m2),

then (m∗1,m
∗
2) is a saddle point. By (9), we have

max
m1

h1(m1,m
∗
2) = min

m2

max
m1

h1(m1,m2) = max
m1

min
m2

h1(m1,m2) = min
m2

h1(m
∗
1,m2)

Let the common value be v. Then,

for any n1 ∈M1, h1(n1,m
∗
2) ≤ max

m1∈M1

h1(m1,m
∗
2) = v

and

for any n2 ∈M2, h1(m
∗
1, n2) ≥ min

m2

h1(m
∗
1,m2) = v.

But h1(m
∗
1,m

∗
2) ≥ minm2∈M2 h1(m

∗
1,m2) = v and h1(m

∗
1,m

∗
2) ≤ maxm1∈M1 h1(m1,m

∗
2) = v.

On the other hand, let (m∗1,m
∗
2) be a saddle point of game Ĝ. Then, h1(m

∗
1,m

∗
2) =

maxm1 h1(m1,m
∗
2) = minm2 h1(m

∗
1,m2) by (7). Consider minm2 maxm1 h1(m1,m2). Then,

minm2 maxm1 h1(m1,m2) ≤ h1(m
∗
1,m

∗
2). Similarly, we have maxm1 minm2 h1(m1,m2) ≥

h1(m
∗
1,m

∗
2). By Lemma 1.1, we have (9). Moreover, for any m1,

min
m2∈M2

h1(m1,m2) ≤ h1(m1,m
∗
2) ≤ h1(m

∗
1,m

∗
2) = min

m2∈M2

h1(m
∗
1,m2)
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and for any m2,

max
m1∈M1

h1(m1,m2) ≥ h1(m
∗
1,m2) ≥ h1(m

∗
1,m

∗
2) = max

m1∈M1

h1(m1,m
∗
2).

Finally we show that E1(Ĝ) is convex. Suppose that m1,m
′
1 ∈ E1(Ĝ). Then,

min
m2∈M2

h1(m1,m2) = min
m2∈M2

h1(m
′
1,m2).

Thus, for any m2 ∈M2,

αh1(m1,m2) + (1− α)h1(m
′
1,m2) ≥ α min

m2∈M2

h1(m1,m2) + (1− α) min
m2∈M2

h1(m
′
1,m2),

and hence αm1 + (1− α)m′1 is also a maximin strategy.

1.4 Maximin Criterion as a Solution

1.4.1 Conceptual evaluations

A priori demand on a theory of rational behavior in games:

1. Coherent decision criterion: optimal against predictions about opponent’s behavior.

The Maximin criterion is coherent in the sense that from individual’s perspective,

inability to make perfect predictions implies maximization of security levels.

2. Perfect rationality: predictability of opponent’s behavior.

Although the Maximin criterion does not require predictability, it is compatible with

it for 0-sum games.

3. Interpersonal knowledge and intrapersonal logical ability.

The Maximin criterion only requires self-consciousness.

4. Playability: implementation of the decision criterion.

The solution to the Maximin criterion is constructive through linear programming.

Epistemic extensions.
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The Maximin criterion no interpersonal knowledge requirements. However, in zero-

sum games, the Minimax theorem shows that if both players employ the Maximin criterion

(denoted by MMi), then the resulted decisions satisfies the decision criteria (N1) and (N2)

in Hu-Kaneko. It is then a curious fact whether these two decision criteria are equivalent

under the assumption of common knowledge of the game being zero-sum. Formally, the

desirable conclusions include

C(g), C(MM1 ∧MM2) ` (I1(s1) ∧ I2(s2)) ≡ C(Nash(s1, s2))

and

C(g) ` C(MM1 ∧MM2) ≡ C(D1 ∧D2).

First of all, we need to supplement MMi with D01i − D02i. Then, the first statement

above seems a restatement of the Minimax theorem in epistemic terms; the second state-

ment seems more involved and perhaps is not provable. One related issue is weather

common knowledge is necessary for the above derivations, and it seems to be the case.

If it actually requires common knowledge, then the epistemic status of Maximin decision

criterion as a way to achieve the best-response property (D3i) is not far from the Nash

noncooperative solution. The only difference lies more or less on the playability aspect—

the Maximin criterion can be solved by the simplex method. Nonetheless, the whole

exercise is to give a separate argument (than Aumman’s consideration of the Maximin

criterion and criticism of it) to bridge the difference between the Maximin criterion and

the Nash noncooperative solution.

1.4.2 Maximin Criterion and Linear Programming

An important feature of 0-sum games is that the solution to the Maximin criterion can

be constructively obtained. This is done by transforming the maximization problem in

the Maximin criterion into a linear programming problem.

Let Ĝ = 〈N, {Mi}i∈N , {hi}i∈N〉 be the mixed extension of a 2-person 0-sum game.

Assume, without loss of generality, that h1(s1, s2) > 0 for all (s1, s2) ∈ S1 × S2. Consider

the following problem:
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min
us1 ,s1∈S1

∑
s1∈S1

us1

subject to

us1 ≥ 0 for all s1 ∈ S1,
∑
s1∈S1

us1h1(s1, s2) ≥ 1 for all s2 ∈ S2.

Lemma 1.2. (1) The above problem is feasible, i.e., there exists {us1 : s1 ∈ S1} that

satisfies the constraints.

(2) If {u∗s1 : s1 ∈ S1} solves the above problem, then m1 ∈M1 defined as

m∗1[s1] =
u∗s1∑

s1∈S1
u∗s1

solves the Maximin criterion.

1.4.3 Linear Programming

First we prove that linear programming is a finite problem, that is, either the problem is

unbounded or it is sufficient to check extreme points for optimality. We consider a linear

programming in the following form: Problem 1.

min
x∈Rn

cTx =
n∑
j=1

cjxj subject to Ax = b, x ≥ 0,

where c ∈ Rn, A ∈ Rm×n is a matrix with rank m, and b ∈ Rm.

Definition 1.3. A hyperplane in Rn is a set of the form

H = {x ∈ Rn : a1x1 + ....+ anxn = b0},

with ai 6= 0 for some i ∈ {1, ..., n}.

A half-space is a set of the form

{x ∈ Rn : a1x1 + ....+ anxn ≥ b0},

with ai > 0 for some i.

A polyhedron is the intersection of finitely many half-spaces.
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We denote the jth column of the matrix A by Aj. Let {Aj1 , ..., Ajm} be a set of m

linearly independent columns in A. Let B = [Aj1 , ..., Ajm ], and let y = B−1b. The vector

x ∈ Rn defined by xjr = yr for r = 1, ...,m and xj = 0 if j /∈ {j1, ..., jm} is called a basic

solution w.r.t. the basis {j1, ..., jm} to Problem 1. A basic solution x is called a basic

feasible solution, abbreviated as BSF, if x ≥ 0. Let

F = {x ≥ 0 : Ax = b}

be the set of feasible solutions to Problem 1.

Definition 1.4. A point w in F = {x ≥ 0 : Ax = b} is called a vertex if for any x 6= w

and y 6= w and any λ ∈ [0, 1], w 6= λx+ (1− λ)y.

Theorem 1.5. A vector w ∈ Rn is a vertex of F if and only if it is a basic feasible

solution of Problem 1.

Proof. (⇒) Let w be a vertex of F and let I = {i : 1 ≤ i ≤ n,wi > 0}. First we show

that the set {Ai : i ∈ I} is linearly independent, and then we show that w is a BFS.

(1) {Ai : i ∈ I} is linearly independent. Suppose not and suppose that
∑

i∈I λiAi = 0 for

some {λi}i∈I , λi0 6= 0 for some i0 ∈ I. Define λj = 0 for j /∈ I. Then Aλ = 0 and λj 6= 0

only if wj > 0.

Let θ = minλj 6=0
wj

|λj | > 0. Let w+ = w + θλ and w− = w − θλ. Then, Aw+ =

A(w + θλ) = Aw + θ(Aλ) = b; similarly, Aw− = b. Now we show that w+ ≥ 0 and

w− ≥ 0. For each j /∈ I, w+
j = wj ≥ 0. For each i ∈ I, if λi = 0 then w+

i = wi ≥ 0; if

λi 6= 0 then

w+
i = wi + θλi ≥ wi − λi

wi
λi

= 0;

similarly, w−i ≥ 0.

Thus, w+ ∈ F and w− ∈ F . Because λi0 6= 0, w+ 6= w and w− 6= 0. But w =

1
2
w+ + 1

2
w−, a contradiction to w being a vertex of F .

(2) w is a BFS if {Ai : i ∈ I} is linearly independent. Because {Ai : i ∈ I} is linearly

independent, |I| ≤ m. Expand I into J if necessary so that I ⊆ J , |J | = m, {Aj : j ∈ J}
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is linearly independent. Because Aw = b, w is a basic solution w.r.t. {Aj : j ∈ J}. w is

feasible because w ∈ F .

(⇐) Suppose that w is a BFS w.r.t. {Aj : j ∈ J}. Suppose, to the contrary, that

w = λu+ (1− λ)v for some u 6= w, v 6= w, λ ∈ (0, 1), and u, v ∈ F .

Because w is a BFS, then for any w′ ∈ F such that w′j = 0 for all j /∈ J , w′ = w. Now,

because u ∈ F , uj = 0 for all j /∈ J . So u = w, a contradiction.

Definition 1.5. A BFS w for problem 1 is degenerate if |{i : wi = 0}| > n−m.

Theorem 1.6. If two different bases correspond to a single BFS w, then w is degenerate.

Proof. Let I and J be the two bases. Then |I ∩ J | < m and wi = 0 for all i /∈ I ∩ J .

Hence, w is degenerate.

Lemma 1.3. Suppose that P = {x ∈ Rn : Ax ≤ b} is a polyhedron. Then v is a vertex of

P if and only if there are n linearly independent constraints among Ax ≤ b that are tight

at w.

Proof. (⇒) Suppose that v is a vertex of P . Let A ∈ Rm×n, and we denote the ith row

of A by Ai. Suppose, to the contrary, that the set I = {i : Aiv = bi} has rank r < n.

Then the space H = {t ∈ Rn : Ait = 0 for all i ∈ I} has dimension n− r. Let t 6= 0 be a

nonzero vector in H. Then, for sufficiently small θ > 0, Aj(v ± θt) < bj for all j /∈ I and

Ai(v ± θt) = bi for all i ∈ I. Thus, v ± θt ∈ P and v ± θt 6= v because θ > 0 and t 6= 0.

But v = 1
2
(v + θt) + 1

2
(v − θt), a contradiction to v being a vertex of P .

(⇐) Let {Ai1 , ..., Ain} be the set of linearly independent constraints that are tight at v.

Let B be a n × n matrix with Br = Air for r = 1, ..., n. Let b′ ∈ Rn be the vector such

that b′r = bir for r = 1, ..., n. Then v = B−1b′.

Suppose that v = λu + (1 − λ)w for some u,w ∈ P and λ ∈ [0, 1]. Then Bu ≤ b′

and Bw ≤ b′. But b′ = Bv = λBu + (1 − λ)Bw, and hence Bu = b′ = Bw. Thus,

u = B−1b′ = v = w.
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Now we show that either the Problem 1 has an optimal solution among the vertexes

or it is unbounded.

Theorem 1.7. Suppose that v ∈ F = {x ∈ Rn : Ax = b, x ≥ 0}. Then, either for any

M ∈ R, there exists y ∈ F such that c · y < M , or there exists a vertex w of F such that

c · w ≤ c · v.

Proof. v ∈ F implies Av = b and v ≥ 0. Let (Cj) be the constraint xi ≥ 0 for j = 1, ..., n

and let (Ei) be the constraint Aix = bi for i = 1, ...,m. Let S ⊆ {C1, ..., Cn, E1, ..., Em}

be the largest subset of constraints including {E1, ..., Em} that are linearly independent

and are tight at v. Let |S| = r. If r = n, then by Lemma 1.3 v is a vertex and we are

done. Therefore assume that r < n. Let I = S ∩ {C1, ..., Cn}.

Notice that if vj = 0 and j /∈ S, then the constraint (Cj) can be written as a linear

combination of constraints in S. Now let

F ∗ = {x ∈ Rn : xj = 0 for all j ∈ I, Ax = 0}.

dim(F ∗) = (n−m)− (r −m) = n− r.

13


