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1 Introduction: foundational issues in game theory

1.1 History of game theory

0. Initiator: John von Neumann (1903-1957). He has three major publications on game

theory and related subject:

0.1. von Neumann (1928): Minimax Theorem for a two-person zero-sum game
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0.2. von Neumann (1937): Balanced Economic Growth and Minimax Theorem

He reproved the minimax theorem using Brouwer’s fixed point theorem, and then applied

the minimax theorem to the balanced economic model to obtain the existence of a balanced

growth path.

0.3. von Neumann and Oskar Morgenstern (1944) published the book entitled Theory

of Games and Economic Behavior, Princeton University Press. This book is the real

beginning of the present theory of games:

a. Expected utility theory

b. Description of a game in extensive form; normalization by the concept of a strategy

c. Normal form game — we will start with this form of a game

d. For a normalized form game with 2 players and the sum of payoffs is always zero, when

mixed strategies are allowed to play, the Minimax Theorem holds

e. Cooperative game theory: the three quarters of the book by von Neumann-Morgenstern

were devoted to cooperative game theory. They investigated the mathematical concept

of a stable set, interpreting it as a socially accepted stable standard of behavior. Never-

theless, this part is a failure of their great trials.

After von Neumann-Morgenstern (1944):

1. 1st period to 1964: mathematical studies by mathematicians including John F. Nash—

Princeton’s red books

2. 2nd period from 1965 to 1975: cooperative game theory and its applications to market

economies. The Debreu-Scarf (1963) limit theorem is an important contribution in this

period.

3. 3rd period from 1975 to 1990: recognition of the importance of noncooperative game

theory, especially, extensive games. The tendency in this period is characterized by a

study of “rational behavior”.

4. 4th period from 1990 to present: proliferation of applications of game theory to many
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fields such as in economics (auction, voting, etc.), biology, etc.

1.2 Game theory in crisis

Influence of game theory in economics:

1. emphasis of strategic considerations: rational expectations, strategic voting, etc.

2. powerful solution concept: Nash equilibrium and incentives

As a mathematical tool, game theory is rather successful

How about as a theory of rational behavior?

1.3 Theory of rational behavior

1. Formulation of physical situation

2. Theory of preferences

3. Theory of probability

4. Theory of information/knowledge

4.1. information process

4.2. logical ability and inference

4.3. belief formation and revision

2 Expected Utility Theory

2.1 Standard Theory

X = {x1, ..., xn} is a finite set of outcomes. The vN-M expected utility theory has two

components: the set of lotteries over X, and a preference relation � over those lotteries.
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The set of lotteries is ∆(X) = {p ∈ ([0, 1])|X| :
∑

x∈X px = 1}.

vN-M axioms for expected utility

EU1 (Ordering)� is a preference relation.

EU2 (Independence) For all p, q, r ∈ ∆(X) and α ∈ (0, 1),

αp+ (1− α)r � αq + (1− α)r if and only if p � q.

EU3 (The Continuity axiom) For all p, q, r ∈ ∆(X), if p � q � r, then there exist

α, β ∈ (0, 1) such that αp+ (1− α)r � q � βp+ (1− β)r.

Theorem 2.1. A preference relation � satisfies EU1-EU3 if and only if there exists a

function h : X → R such that for all p, q ∈ ∆(X),

p � q ⇔
∑
x∈X

pxh(x) >
∑
x∈X

qxh(x).

Moreover, if h′ satisfies the above condition, then there exist a > 0 and b such that for all

x ∈ X, h′(x) = ah(x) + b.

Remarks.

• The interpretation of h(x) is different from the utility function obtained in the ordi-

nal utility representation. Strictly speaking, h(x) is not the utility of the outcome

x, but of the lottery that assigns probability 1 to x (what is the difference?).

• Uniqueness (up to linear transformations) only applies to representations with the

form of expected utilities. Why is uniqueness important?

The theorem is proved with the following three lemmas:

Lemma 2.1. If p � q, then α > β ⇔ αp+ (1− α)q � βp+ (1− β)q for all α, β ∈ [0, 1].

Proof. β < α ≤ 1. Hence, by (EU2),

p = (1− β)p+ βp � (1− β)q + βp = βp+ (1− β)q.
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Therefore, by (EU2) again,

αp+ (1− α)q =
α− β
1− β

p+
1− α
1− β

(βp+ (1− β)q) � βp+ (1− β)q.

On the other hand, if α = β, then αp+ (1− α)q ∼ βp+ (1− β)q.

Lemma 2.2. Let x1 - x2 - .... - xn and x1 ≺ xn. For any p ∈ ∆(X), there exists a

unique α(p) ∈ [0, 1] such that

p ∼ α(p)xn + (1− α(p))x1.

Proof. First note that xn % p % x1. This can be proved by induction on | supp(p)|. It is

obvious when | supp(p)| = 1. Assume that this holds for all p with | supp(p)| ≤ m. Let

supp(q) = {y1, ..., ym+1} and let A = {y1, ..., ym}. Then q = (1−p[ym+1])qA+p[ym+1]ym+1,

where qA[yi] = q[yi]
1−q[ym+1]

for i = 1, ...,m. By the induction hypothesis, xn % qA % x1 and

xn % ym+1 % x1. By (EU2) we have xn % q % x1.

If p ∼ xn, then α(p) = 1; if p ∼ x1, then α(p) = 0. Suppose that xn � p � x1. Let

C = {α ∈ [0, 1] : αxn + (1− α)x1 � p}.

Then α(p) = inf C.

To see this, suppose that α(p)xn+ (1−α(p))x1 ≺ p ≺ xn. By (EU3) there exists some

β > α(p) such that βxn + (1− β)x1 ≺ p. By Lemma 2.1, γ < β implies that γ /∈ C and

hence β ≤ α(p), a contradiction.

On the other hand, suppose that α(p)xn + (1 − α(p))x1 � p � x1. By (EU3) there

exists some β < α(p) such that βxn + (1 − β)x1 � p and so β ∈ C. Hence β ≥ α(p), a

contradiction.

Lemma 2.3. Let u(xi) = α(xi). Then for any p ∈ ∆(X),
∑n

i=1 p[xi]u(xi) = α(p).

Proof. We prove by induction on | supp(p)|. It is obvious when | supp(p)| = 1. As-

sume that this holds for all p with | supp(p)| ≤ m. Let supp(q) = {y1, ..., ym+1} and

let A = {y1, ..., ym}. Then q = (1 − p[ym+1])qA + p[ym+1]ym+1. By the induction
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hypothesis,
∑m

i=1 q
A[yi]u(yi) = α(qA). Moreover, qA ∼ α(qA)xn + (1 − α(qA))x1 and

ym+1 ∼ α(ym+1)xn + (1− α(ym+1))x1. By appropriate applications of (EU2),

q = (1− q[ym+1])qA + q[ym+1]ym+1 ∼

((1− q[ym+1])α(qA) + q[ym+1]u(ym+1))xn + (1− ((1− q[ym+1])α(qA) + q[ym+1]u(ym+1)))x1,

and hence

α(q) = (1− q[ym+1])α(qA) + q[ym+1]u(ym+1) =
m+1∑
i=1

q[yi]u(yi).

2.2 The Frequentist perspective

What is probability in the vN-M expected utility theory?

• vague answer available

– use probability values as primitives

(in contrast with Savage’s subjective probability)

– von Neumann-Morgenstern emphasized frequentist theory

(without direct formulation, forgotten by most people)

• ignored by most literature

– one suggested answer: probability is belief

∗ no external counterpart of probability values

– why worried about a mere interpretation?

∗ different interpretations suggest different decision criteria

The frequentist theory of probability (von Mises, 1939; Kolmogorov, 1965)

Probability values are properties of infinite sequences
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• Lottery αx+ (1− α)y:

– x and y—pure outcomes ; α—a number in [0, 1]

von Mises: consider infinite sequence (x, y, x, x, y, ... )

• R1 frequency requirement: the relative frequency of x is α

• R2 randomness requirement: no detectable pattern in this sequence

The decision maker’s choice problem becomes ξ = (x, y, x, x, y, ...)

ζ = (x, x, y, x, x, ...)
instead of

 αx+ (1− α)y

βx+ (1− β)y

where in ξ the frequency of x is α and in ζ the frequency of x is β

Frequentist compound lotteries

Compound lottery: (p, q, α) 7→ αp+ (1− α)q

(p, q ∈ ∆(X); α ∈ [0, 1])

Shuffle operator: (ξ, ζ, ν) 7→ ξ �ν ζ

• ξ, ζ ∈ XN; ν ∈ {0, 1}N

• math: (ξ �ν ζ)t = (1− νt)ξt−fν(t) + νtζfν(t)

– f ν(0) = 0 and f ν(t) =
∑t−1

s=0 νs for t > 0

• ξ �ν ζ contains all information of the original sequences

• visualize the idea of compound lotteries

• alternatives: deleting the outcome not chosen

Domain of preference

A collective is an infinite sequence that satisfies R1.
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• ξ ∈ XN is a p-sequence if

lim
T→∞

|{t : 0 ≤ t ≤ T − 1, ξt = x}|
T

= px for each x ∈ X.

• Set of collectives:

ΩX = {ξ ∈ XN : ξ is a p-sequence for some p ∈ ∆(X)}.

Lemma 2.4. If ξ is a p-sequence, ζ a q-sequence, and ν an (α, 1 − α)-sequence, then

ξ �ν ζ is an (αp+ (1− α)q)-sequence.

Axioms

A1 - is a complete and transitive binary relation

A2 For all ξ, ζ, η in ΩX , if ξ ≺ ζ ≺ η, then there is a number α and an (α, 1−α)-sequence

ν in {0, 1}N such that ζ ∼ ξ �ν η

A3 For all ξ, ζ, η in ΩX and all (α, 1 − α)-sequences ν1, ν2 in {0, 1}N with α > 0,

ξ �ν1 η - ζ �ν2 η if and only if ξ - ζ

Frequentist transaltion

To translate axioms from (ΩX ,-) to (∆(X),-P ), define Γ : ΩX → ∆(X) as Γ(ξ) = p

if ξ is a p-sequence. Then - over ΩX is translated into -P over ∆(X) if for all ξ, ζ ∈ ΩX ,

ξ - ζ if and only if ψ(ξ) -P ψ(ζ). (1)

Theorem 2.2 (Frequentist translation). (a) Suppose that - over ΩX satisfies A1 and

A3. There is a -P over ∆(X) that satisfies (1).

(b) Suppose that - over ΩX and -P over ∆(X) satisfy (1). For i = 1, 2, 3,

- satisfies Ai if and only if -P satisfies EUi.

Representation theorem

Theorem 2.3 (Frequentist axiomatization of expected utility). - satisfies A1-A3 if and

only if there exists a function h such that for all ξ, ζ ∈ ΩX ,

ξ - ζ ⇔ lim
T→∞

T−1∑
t=0

h(ξt)

T
≤ lim

T→∞

T−1∑
t=0

h(ζt)

T
.
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3 Two-Person Games and Various Concepts

3.1 2-Person Normal Form Games

A 2-person normal form game is given as a triple:

G = (N, {Si}i∈N , {hi}i∈N),

where

(1): N = {1, 2}− the set of players;

(2): Si = {si1, ..., si`i} − the set of pure strategies for player i = 1, 2;

(3): hi : S1 × S2 → R − the payoff function of player i = 1, 2.

The set S1×S2 is the set of ordered pairs of elements in S1×S2, and is called the Cartesian

product of S1 and S2.

A 2-person normal form game G = (N, {Si}i∈N , {hi}i∈N) is often described by a matrix

form:

Prisoner’s Dilemma Matching Pennies

s21 s22

s11 (5, 5) (1, 6)

s12 (6, 1) (3, 3)

s21 s22

s11 (1,−1) (−1, 1)

s12 (−1, 1) (1,−1)

We say that a 2-person game is zero-sum iff

h1(s1, s2) + h2(s1, s2) = 0 for all (s1, s2) ∈ S1 × S2. (2)

3.2 Maximin Decision Criterion

We consider the individual decision making criterion for player i called the maximin

decision criterion. It has two steps:
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(1): Player i evaluates each of his strategies by its worst possible payoff;

(2): Player i maximizes the evaluation by controlling his strategies.

These two steps are formulated mathematically as follows. Let i = 1.

(1∗): for each s1 ∈ S1, the evaluation of s1 is defined by mins2 h1(s1, s2);

(2∗): Player 1 maximizes mins2 h1(s1, s2) by controlling s1.

These two steps are expressed by

max
s1∈S1

min
s2∈S2

h1(s1, s2) = max
s1∈S1

( min
s2∈S2

h1(s1, s2)). (3)

We say that s∗1 is a maximin strategy iff it is a solution of (3).

Question 4: Can we regard mins2∈S2 h1(s1, s2) as a function of s1? In what sense?

Question 5: Formulate the maximin decision criterion for player 2.

Example ??.1: Consider the following zero-sum game:

s21 s22 mins2 h1(s1, s2)

s11 (5,−5) (3,−3) 3

s12 (2,−2) (6,−6) 2

mins1 h2(s1, s2) ? ?

When the zero-sum condition (2) holds, the maximization of h1 is equivalent to the

minimization of h2, i.e.,

h1(s1, s2)→ max
s1

⇐⇒ h2(s1, s2)→ min
s1

(4)

and the minimization of h1 is equivalent to the maximization of h2, i.e.,

h1(s1, s2)→ min
s2

⇐⇒ h2(s1, s2)→ max
s2

. (5)

By (4) and (5), the maximin decision criterion for player 2 will be formulated as follows:
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(1∗-2): for each s2 ∈ S2, the evaluation of s2 is defined by maxs1 h1(s1, s2);

(2∗-2): Player 2 minimizes maxs1 h1(s1, s2) by controlling s2.

These two steps are expressed by

min
s2∈S2

max
s1∈S1

h1(s1, s2) = min
s2∈S2

(max
s1∈S1

h1(s1, s2)). (6)

Merit: Since (3) and (6) are described using the same payoff function h1, we can compare

these two. In general, we have the following inequality.

Lemma ??.1. maxs1∈S1 mins2∈S2 h1(s1, s2) ≤ mins2∈S2 maxs1∈S1 h1(s1, s2).

Proof. Let t1 ∈ S1 and t2 ∈ S2 be arbitrary strategies for players 1 and 2. First, we have

h1(t1, t2) ≤ max
s1∈S1

h1(s1, t2)

Looking at the latter inequality, we have

min
s2∈S2

h1(t1, s2) ≤ min
s2∈S2

max
s1∈S1

h1(s1, s2).

Since the right-hand side is constant, we have

max
s1∈S1

min
s2∈S2

h1(s1, s2) ≤ min
s2∈S2

max
s1∈S1

h1(s1, s2).

2

In the following example, the assertion of Lemma ??.1 holds in inequality.

Example ??.2: Consider the zero-sum game of Example ??.1:

s21 s22 mins2 h1(s1, s2)

s11 5 (−5) 3 (−3) 3

s12 2 (−2) 6 (−6) 2

maxs1 mins2 h1(s1, s2) = 3

maxs1 h1(s1, s2) 5 6 mins2 maxs1 h1(s1, s2) = 5

In the following example, the assertion of Lemma ??.1 holds in equality.
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Example ??.3: Consider the zero-sum game:

s21 s22 mins2 h1(s1, s2)

s11 5 3 3

s12 6 4 4

maxs1 mins2 h1(s1, s2) = 4

maxs1 h1(s1, s2) 6 4 mins2 maxs1 h1(s1, s2) = 4

Example ??.4: The Scissors-Rok-Paper is formulated as follows:

Sc Ro Pa

Sc 0 −1 1

Ro 1 0 −1

Pa −1 1 0

Calculate the maximin value and minimax value.

3.3 Strictly Determined Games

We say that a 2-person zero-sum game G = (N, {Si}i∈N , {hi}i∈N) is strictly determined

iff

max
s1∈S1

min
s2∈S2

h1(s1, s2) = min
s2∈S2

max
s1∈S1

h1(s1, s2). (7)

Then the game of Example ??.3 is strictly determined, while the game of Example ??.2

is not.

Question 6: Explain why a game is said to be strictly determined. In other words, what

is the intended meaning of “strictly determined”.
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In fact, the equation (7) is related to some concept of an equilibrium. In a 2-person

zero-sum game, it is the saddle point, but in general, it is the Nash equilibrium.

Let G = (N, {Si}i∈N , {hi}i∈N) be a 2-person normal form game. We say that (s∗1, s
∗
2)

is a saddle point with respect to h1 iff for all s1 ∈ S1 and s2 ∈ S2

h1(s1, s
∗
2) ≤ h1(s∗1, s

∗
2) ≤ h1(s∗1, s2). (8)

Example ??.5: In the game of Table ??.4, the pair (s12, s22) is a unique saddle point.

On the other hand, the game of Table ??.3 has no saddle point.

s21 s22

s11 5 3

s12 2 6

s21 s22

s11 5 3

�

s12 6 ↼ 4

Table ??.3 Table ??.4

In fact, this coincidence of having a saddle point and (7) is not mere accidental for

the above example. We have the following theorem.

Theorem ??.2.(1): A 2-person game G has a saddle point if and only if (7) holds.

(2): Suppose that G has a saddle point. Then a pair (s∗1, s
∗
2) of strategies is a saddle point

if and only if s∗1 and s∗2 are maximin strategies for players 1 and 2, respectively.

Proof. We prove the Only-If part and If part of (1). These are also proofs of the Only-If

part and If part of (2).

(1)(Only-If ): Let (s∗1, s
∗
2) be a saddle point of gameG. Then, h1(s∗1, s

∗
2) = maxs1 h1(s1, s

∗
2) =

mins2 h1(s∗1, s2) by (8). Consider mins2 maxs1 h1(s1, s
∗
2). Then, mins2 maxs1 h1(s1, s

∗
2) ≤

h1(s∗1, s
∗
2). Similarly, we have maxs1 mins2 h1(s1, s

∗
2) ≥ h1(s∗1, s

∗
2). By Lemma ??.1, we have

(7).

(If ): Suppose that (7) holds. Let s∗1 and s∗2 be maximin strategies for players 1 and 2. By

(7), we have

max
s1

h1(s1, s
∗
2) = min

s2
max
s1

h1(s1, s2) = max
s1

min
s2

h1(s1, s2) = min
s2

h1(s∗1, s2)
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If h1(s∗1, s
∗
2) ≤ maxs1 h1(s1, s

∗
2) and mins2 h1(s∗1, s2) ≤ h1(s∗1, s

∗
2), we have maxs1 h1(s1, s

∗
2) ≤

h1(s∗1, s
∗
2) ≤ mins2 h1(s∗1, s2). This implies (8).2

The concept of a saddle point is, in fact, equivalent to the concept of a Nash equilib-

rium. We say that a strategy pair (s∗1, s
∗
2) is a Nash equilibrium iff

h1(s1, s
∗
2) ≤ h1(s∗1, s

∗
2) for all s1 ∈ S1, (9)

h2(s∗1, s2) ≤ h2(s∗1, s
∗
2) for all s2 ∈ S2.

We have the following theorem on the relationship between the saddle point and Nash

equilibrium.

Theorem ??.3. Let G = (N, {Si}i∈N , {hi}i∈N) be a zero-sum 2-person game. Then a

pair (s∗1, s
∗
2) of strategies is a saddle point for h1 if and only if (s∗1, s

∗
2) is a Nash equilibrium

in G.

Proof. The first half of (9) is the same as the first half of (8). Hence, it suffices to

compare the latter half of (9) with that of (8). By the zero-sum condition (2), the latter

half of (9) is rewritten as

−h1(s∗1, s2) ≤ −h1(s∗1, s
∗
2) for all s2 ∈ S2.

This is equivalent to

h1(s∗1, s
∗
2) ≤ h1(s∗1, s2) for all s2 ∈ S2.

This is the latter half of (8). 2

3.4 Nash Equilibrium and Pareto-Optimality in Two-person Games

Let G = (N, {Si}i∈N , {hi}i∈N) be a two-person normal form game. Then, we say that a

strategy pair (s1, s2) Pareto-dominates another strategy pair (t1, t2) iff

h1(s1, s2) > h1(t1, t2) (10)

h2(s1, s2) > h2(t1, t2).
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We say that (s1, s2) is a Pareto optimal iff no strategy pair Pareto-dominates (s1, s2).

Note that Pareto optimality is an attribute of a pair of strategies.

Question 7. Find one example of a Pareto dominance in Table 1 and Table 2.

Table ??.1: Prisoner’s Dilemma Table ??.2: Matching Pennies

s21 s22

s11 (5, 5) (1, 6)

s12 (6, 1) (3, 3)

s21 s22

s11 (1,−1) (−1, 1)

s12 (−1, 1) (1,−1)

Also, obtain Pareto optimal strategy pairs in each of Tables ??.1 and ??.2.

Question 8. What are the Nash equilibria in Table ??.1 and Table ??.2?

According to the above calculations, some people may conjecture that a Nash equi-

librium is not Pareto optimal and vice versa. This conjecture is incorrect. First, we have

the game called the Battle of the Sexes:

Table ??.5: the Battle of the Sexes

s21 s22

s11 (2, 1) (0, 0)

s12 (0, 0) (1, 2)

Also, we have the following proposition.

Proposition ??.4. Let G = (N, {Si}i∈N , {hi}i∈N) be a zero-sum 2-person game. Then,

any strategy pair (s1, s2) is Pareto-optimal in G.

Proof. Let (s1, s2) and (t1, t2) be any strategy pairs in game G. By (2), h1(s1, s2) >

h1(t1, t2) if and only if h2(s1, s2) < h2(t1, t2). Thus, there is no Pareto-dominance relation

between (s1, s2) and (t1, t2). Since (s1, s2) and (t1, t2) are arbitrary, there is no Pareto-

dominance relation in game G. Thus, (s1, s2) is Pareto optimal. 2

15



4 Extensive Games

4.1 Extensive Games

An extensive game Γ has the following constituents:

(1): the set of players N = {1, ..., n};

(2): a finite tree T consisting of the sets of nodes and branches ;

(3): the set of nodes is divided into the set of non-terminal nodes X and

the set of terminal nodes Z;

each node in X is called a decision node; and each in Z is called an endnode;

(4): a player assignment π which assigns one player in N to each node x ∈ X;

(5): for i ∈ N, the set {x ∈ X : π(x) = i} is partitioned into the set of

information sets {Ii1, ..., Iimi};

(6): player i has the set of available actions at each Ii, which is denoted by A(Ii);

(7): payoff assignments to the players attached to the endnodes.

Let us look at those structure by Prisoner’s Dilemma.

Example 4.1.(Prisoner’s Dilemma): Figure 4.1 is the representation of Prisoner’s Dilemma

in extensive form. Here,

the player set N = {1, 2}:

the decision nodes X = {xo, x1, x2} and the endnodes Z = {x3, x4, x5, x6};

two information sets: I1 = {x0} and I2 = {x1, x2};

the available actions A(I1) = {L,R} and A(I2) = {L,R};

the payoff assignments are attached at each endnode.

In Figure 4.1, player 2 moves after player 1. But this is an artificial order. From the
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viewpoint of decision making, this order does not matter, since player 2 would not receive

any information about what player 1 chooses.

In this example, the concept of a strategy is not affected by an information structure,

since no information is available in this game. Player 1 has two strategies L and R, and

player 2 has also L and R. A strategy, say L, for player 2 can be described in Figure 4.1

by putting the left arrows from x1 to x3 and from x2 to x5.

Question 1. In Figure 4.1, the arrows from x1 to x3 and from x2 to x6 do not describe

a strategy for player 2. What is wrong with this description?
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The next example has a different information structure.

Example 4.2.(Prisoner’s Dilemma with Perfect Information): Change Figure 4.1 to Fig-

ure 4.2 so that the information set {x1, x2} is divided into I2 = {x1} and I3 = {x2}. In

this game, player 2 would observe what player 1 does. The two separated information

sets I2 = {x1} and I3 = {x2} mean that his received information at x1 is distinguished

from that at x2. Of course, player 1 makes a choice at x0 without any information about

2’s choice. In this game, player 2 can make a contingent plan such as

σ2(I) =


R if I = I2 = {x1}

L if I = I3 = {x2}.

In words, player 2 would choose R if he receives information I2, and he would choose L if

he receives I3.

Let us write down all the strategies for player 2 :

σ1
2(I) =


L if I = I2

L if I = I3

σ2
2(I) =


L if I = I2

R if I = I3

σ3
2(I) =


R if I = I2

L if I = I3

σ4
2(I) =


R if I = I2

R if I = I3.

Question 2. How do you describe the strategy σ2
2 graphically in Figure 4.2? Also,

describe σ2
2 in words.
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4.2 The Derived Normal Game and Nash Equilibrium

Let us continue the game of Example 4.2. In this game, players 1 and 2 have the following

strategy sets:

S1 = {L,R} and S2 = {σ1
2, σ

2
2, σ

3
2, σ

4
2}. (11)

Then, we have the normal form game G = (N, {Si}i∈N , {hi}i∈N), where N = {1, 2}, S1

and S2 are given by (11), the payoff functions h1 and h2 are given by the following matrix:

Table 4.1

σ1
2 σ2

2 σ3
2 σ4

2

L (5, 5) (5, 5) (1, 6) (1, 6)

R (6, 1) (3, 3) (6, 1) (3, 3)

Indeed, suppose that players 1 and 2 choose L and σ2
2, respectively. This situation is

described by the arrows in Figure 4.3. Following the arrows indicating the strategies, we

have one path from the root to a leaf is determined, which is called the realization path

by (L, σ2
2). In this case, the realization path is the sequence {x0, x1, x2}. At the leaf, x2,

determined, we have payoff vector (5, 5).

Once a normal form game G = (N, {Si}i∈N , {hi}i∈N) is obtained, the concept of a

Nash equilibrium is defined in the way before, (9) of page 7.

Question 3. What are Nash equilibria in the game of Table 4.1?

Question 4. Describe the Nash equilibria graphically in the tree description of the game.

We consider the Battle of the Sexes:

Table ??.5

s21 s22

s11 (2, 1) (0, 0)

s12 (0, 0) (1, 2)

This game is expressed as the extensive game in Figure 4.4.
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Question 5. Describe the situation of the Battle of the Sexes with the information

structure that player 2 would observe what player 1 chooses.

Question 6. Is the strategy pair indicated by the arrow in Figure 4.5 a Nash equilibrium?

Question 7. What are Nash equilibria in the modified Battle of the Sexes of Question

5?

4.3 Subgame Perfect Equilibrium

In fact, the strategy pair indicated by the arrows in Figure 4.5 is also a Nash equilibrium.

However, we can regard the subtree indicated by the smaller box including x2 as a

one-person problem, where player 2 is only the player. The indicated strategy is not a

Nash equilibrium in this one-person game.

Actually, the game of Figure 4.5 has three subgames, one already indicated, the second

one started from x1, and the last one is the entire game. We say that a strategy pair is

a subgame perfect equilibrium iff a strategy pair indicates a Nash equilibrium to every

subgame.

Question 8. Calculate the subgame perfect equilibrium in the game of Figure 4.5.

Question 9. The game of Figure 4.5 has a unique subgame perfect equilibrium, and two

non-subgame perfect equilibria. If you are player 2 (boy), think about which strategy you

play?

Question 10. How many subgames does the game of Figure 4.4 have?

Let us go to another famous example.

Example 4.3.(Chian-Store Game): Look at Figure 4.6. In the town in question, Chain

store has already a branch, and now (potential) Retailer makes a decision to open a store

or not. If Retailer chooses “in”, then Chain store can choose either “aggressive” policy or

“cooperative” policy. The profits for these players are given at the endnodes of the tree.

Each player has only two strategies: Retailer has “out” and “in”, and Chain store has

“aggressive” and “cooperative”.
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Let an extensive game Γ be given. Take one decision node x in Γ, and consider the

upper part Γx of x including x itself. When all the structures of Γ are closed in Γx, this Γx

is called a subgame of Γ. The entire game Γ itself is a subgame but not a proper subgame.

Let σ∗ = (σ∗1, ..., σ
∗
n) be a strategy profile in an extensive game Γ. Let Γ′ be a subgame

of Γ. Then we denote the restriction of σ∗ to Γ′ by σ∗′. We say that σ∗ = (σ∗1, ..., σ
∗
n) is

a subgame perfect equilibrium iff for any subgame Γ′ of Γ, the restriction of σ∗′ to Γ′ is a

Nash equilibrium in Γ′.

Question 11. How many subgames does the chain-store game have?

Question 12. Calculate the subgame perfect equilibrium in the chain-store game.

Question 13. Obtain all the Nash equilibria in this game.

Example 4.4.(Chian-Store Game with two towns): Now, consider the situation where

there are two towns retailers R1 and R2. The game is played as follows: In town 1, retailer

R1 and chain-store C play the game of Example 4.3. Then, the result of the first town

is informed to town 2. Then retailer R2 and chain-store C play the same game. This

situation is described as Figure 4.8.

The entire situation is described as an extensive game in Figure 4.8.

Question 14. How many subgames does this game have?

Question 15. Calculate the subgame perfect equilibrium in this game.

Question 16. How many strategies does Chain-store have?

Question 17. Think about the chain-store game with 3 towns.

Figure 3.9 is an extensive game description of the chain-store with two-towns. How

many subgames are in this extensive game?

The calculation of the subgame perfect equilibrium is easy. Indicate the subgame

perfect equilibrium.

However, the number of strategies for player C is now quite large. How many strategies

does C have? Then, how many strategies does each R1 and R2 have?
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4.4 Twice-Repeated Prisoner’s Dilemma Γ2

Let consider the situation where the game of “Prisoner’s Dilemma” is repeated twice with

the same players. We denote this situation by Γ2. After the first round is finished, both

players observe what are played in the first round. In the entire game Γ2, the payoff for

each player is assumed to be the sum of the outcome of each round. The entire situation

is described as the extensive game of Fig.3.10.

Question 18. What are the subgames in this twice-repeated prisoner’s dilemma?

Question 19. How many strategies does each player have?

Question 20. Calculate the subgame perfect equilibrium in this game.

4.5 The Number of Strategies in the k-times Repeated Pris-

oner’s Dilemma Γk

We have adopted the definition of a strategy for a player to be a function over the set

of his information sets. However, a strategy defined in this manner may contain some

redundancy. For example, the twice-repeated Prisoner’s Dilemma Γ2 depicted in the

following. Consider the strategy σ1 defined by

σ1(I10) = L, σ1(I11) = L, σ1(I12) = L, and σ1(I13) = R, σ1(I14) = R.

In this strategy, the specifications σ1(I13) = R and σ1(I14) = R are redundant, since this

part is avoided by σ1 itself and does not happen at all. In this sense, the following strategy

σ′1 can be regarded as “equivalent” to σ1:

σ′1(I10) = L, σ′1(I11) = L, σ′1(I12) = L, and σ′1(I13) = L, σ′1(I14) = L.

One procedure of eliminating this redundancy is to consider the equivalence classes of

strategies.
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Let σ1 be a strategy. We say that an information I for player 1 is compatible with σ1

iff there is another strategy σ2 such that the realization path of (σ1, σ2) intersects I. We

say that σ1 is r-equivalent to σ′1 iff σ1(I) = σ′1(I) for any information set I compatible

with σ1, in which case we write σ1 , σ′1.

Question 1. The relation , is an equivalence relation, i.e., it satisfies (1) Reflexivity:

σ1 , σ1 for all σ1; (2) Symmetry: σ1 , σ′1 implies σ′1 , σ1;and (3) Transitivity: σ1 , σ′1

and σ′1 , σ′′1 imply σ1 , σ′′1 .

We would like to count r-equivalent strategies only once. This can be done by consid-

ering the equivalent classes:

[σ1] = {σ′1 : σ′1 , σ1} for strategy σ1. (12)

Now, our question is to count the number of the equivalent classes of strategies for player

1.

Question 2. How many equivalence classes of strategies for 1 in Γ2?

In general, the number of equivalence classes of strategies for 1 in the k-time repeated

Prisoner’s Dilemma Γk is

22k−1+2k−2+...+2+1 (= 22k−1). (13)

Question 3. What is this number for k = 7?

Question 4. Prove (13) (Hint: use induction on k).
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5 Mixed Strategies and Existence of A Nash Equi-

librium

5.1 Mixed Extension

Let G = (N, {Si}i∈N , {hi}i∈N) be an n-person normal form game. Here, Si = {si1, ..., si`i}

is the finite set of pure strategies for i = 1, ..., n.

Now, we allow each player i to choose a pure strategy by using a random mechanism.

A random mechanism is called a mixed strategy. In other words, it is a probability

distribution xi = (xi1, ..., xi`i) over Si. Since xi is a probability distribution, it holds:

`i∑
t=1

xit = 1 and xit ≥ 0 for t = 1, ..., `i. (14)

We denote the set of all mixed strategies (probability distributions over Si) by ∆(Si).

We take the expected payoff for each player i : When each player i chooses his mixed

strategy xi for i ∈ N, the probability of a pure strategy combination (s1t1 , ..., sntn) to

happen is

x1t1 × · · · × xntn . (15)

With this probability, player i gets his payoff hi(s1t1 , ..., sntn). We take the expected sum

of these payoffs:

ĥi(x1, ..., xn) =

`1∑
t1=1

· · ·
`n∑
tn=1

(x1t1 × · · · × xntn)× hi(s1t1 , ..., sntn) (16)

for each (x1, ..., xn) ∈ ∆(S1)× · · · ×∆(Sn).

Now, we have the triple:

Ĝ = (N, {∆(Si)}i∈N , {ĥi}i∈N), (17)

which is called the mixed extension of the game G = (N, {Si}i∈N , {hi}i∈N).

Let us see one example:
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Example 5.1. Consider the matching pennies:

s21 s22

s11 (1,−1) (−1, 1)

s12 (−1, 1) (1,−1)

The mixed extension of this game is as N = {1, 2}, ∆(S1) = {(x11, x12) : x11 + x12 = 1

and x11, x12 ≥ 0},∆(S2) = {(x21, x22) : x21 + x22 = 1 and x21, x22 ≥ 0}, and

ĥ1(x1, x2) = 1× x11 × x21 + (−1)× x11 × x22 + (−1)× x12 × x21 + 1× x12 × x22.

Question 1. Formulate ĥ2(x1, x2) by yourself.

Question 2. What is ∆(S1) of this example, geometrically?

Example 5.2. Consider the Scissors-Rock-Paper:

Sc Ro Pa

Sc 0 −1 1

Ro 1 0 −1

Pa −1 1 0

The mixed extension of this game is given as N = {1, 2}, ∆(S1) = {(x11, x12, x13) :

x11 + x12 + x13 = 1 and x11, x12, x23 ≥ 0},∆(S2) = {(x21, x22, x23) : x21 + x22 + x23 = 1

and x21, x22, x23 ≥ 0}, and

ĥ1(x1, x2) = 0× x11 × x21 + (−1)× x11 × x22 + 1× x11 × x23

+1× x12 × x21 + 0× x12 × x22 + (−1)× x12 × x23

+(−1)× x13 × x21 + 1× x13 × x22 + 0× x13 × x23.

The sets ∆(S1) and ∆(S2) of mixed strategies are identical to

∆2 = {(a1, a2, a3) : a1 + a2 + a3 = 1 and a1, a2, a3 ≥ 0}.
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It is described by the regular triangle of height 1 with coordinates a1, a2, a3, where each

ai is the height of the perpendicular from the point a to the side i. In this case, we can

prove a1 + a2 + a3 = 1 and a1, a2, a3 ≥ 0.

Question 3. Prove a1 + a2 + a3 = 1 and a1, a2, a3 ≥ 0. In what sense, is ∆2 identical to

the regular triangle of height 1? This ∆2 is called the 2-dimensional simplex. Why is this

called 2-dimensional rather than 3-dimensional?

Question 4. The 3-dimensional simplex is given as

∆3 = {(a1, a2, a3, a4) : a1 + a2 + a3 + a4 = 1 and a1, a2, a3, a4 ≥ 0}.

Think about the geometric representation of ∆3 in the 3-dimensional space.

We regard pure strategy sik in Si as equivalent to the `i-dimensional unit vector

ek(`i) = (0, ..., 0, 1, 0, ..., 0) of k − 1 number of 0 and of the k-th component 1 in that in

the latter, pure strategy sik is chosen with probability 1 and the other pure strategies are

not chosen. Rigorously, we define the function ψ : Si → ∆(Si) (i ∈ N) by

ψ(sik) = ek(`i) for k = 1, ..., `i.

By this function, we can regard Si as a subset of ∆(Si), i.e.,

ψ(Si) ⊆ ∆(Si). (18)

Also, we have

hi(s1, ..., sn) = ĥi(ψ1(s1), ..., ψn(sn)) for all (s1, ..., sn) ∈ S1 × ...× Sn.

In this respect, the mixed extension Ĝ is really an extension of the original finite game G.

5.2 Nash Equilibrium in Mixed Strategies

Let Ĝ = (N, {∆(Si)}i∈N , {ĥi}i∈N) be the mixed extension of a finite game G = (N,

{Si}i∈N , {hi}i∈N). A profile of mixed strategies x∗ = (x∗1, ..., x
∗
n) (x∗i ∈ ∆(Si) for i ∈ N) is

called a Nash equilibrium iff for all i ∈ N,

ĥi(xi, x
∗
−i) ≤ ĥi(x

∗
i , x
∗
−i) for all xi ∈ ∆(Si). (19)
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Here, we are using the notation: x∗−i = (x∗1, ..., x
∗
i−1, x

∗
i+1, ..., x

∗
n) and (xi, x

∗
−i) = (x∗1, ..., x

∗
i−1,

xi, x
∗
i+1, ..., x

∗
n). Thus, (x∗i , x

∗
−i) is x∗ itself.

The following is the famous theorem due to John F. Nash.

Theorem 5.1 (Nash (1951)). Let G = (N, {Si}i∈N , {hi}i∈N) be an n-person finite

normal form game. Then, the mixed extension Ĝ = (N, {∆(Si)}i∈N , {ĥi}i∈N) has a Nash

equilibrium.

Let G = (N, {Si}i∈N , {hi}i∈N) be a 2-person zero-sum game. Then, the mixed exten-

sion Ĝ also satisfies the zero-sum condition. Since a Nash equilibrium becomes a saddle

point, it follows from Theorem 5.1 that the mixed extension Ĝ has a saddle point.

Corollary 5.2. Let G = (N, {Si}i∈N , {hi}i∈N) be an 2-person zero-sum game. Then, the

mixed extension Ĝ = (N, {∆(Si)}i∈N , {ĥi}i∈N) has a saddle point with respect to ĥ1.

From this corollary and the mixed strategy analogue of Theorem ??.2, we have the

following theorem.

Theorem 5.3. (von Neumann (1928)). Let G = (N, {Si}i∈N , {hi}i∈N) be an 2-person

zero-sum game. In the mixed extension Ĝ = (N, {∆(Si)}i∈N , {ĥi}i∈N), we have

max
x1∈∆(S1)

min
x2∈∆(S2)

ĥ1(x1, x2) = min
x2∈∆(S2)

max
x1∈∆(S1)

ĥ1(x1, x2). (20)

Theorem 5.1 is proved by applying Brouwer’s fixed point theorem (or Kakutani’s fixed

point theorem). Now, we present Brouwer’s fixed point theorem.

Let (Rm, d) be the m-dimensional Euclidean space with the Euclidean metric d, where

d(x, y) =

√√√√ m∑
t=1

(xt − yt)2 for x, y ∈ Rm.

We say that a sequence {xν} converges to x0 iff the sequence of real numbers {d(xν , x0)}

converges to 0.

Let T be a subset of Rm, i.e., T ⊆ Rm. We say that T is closed (in the topological

sense) iff for any sequence {xν} in T, if {xν} converges to x0 (in Rm), then x0 belongs to

27



T.

Example 5.1. The interval [0, 1] is closed, but (0, 1] is not closed.

Example 5.2. The m dimensional simplex ∆m is closed.

Let T be a subset of Rm. We say that T is bounded iff there is a number M such that

d(0, x) ≤M for all x ∈ T.

Example 5.3. The interval [0, 1] is bounded, but [0,+∞) is not bounded.

Example 5.4. The m dimensional simplex ∆m is bounded.

We say that a subset T of Rm is compact iff T is closed and bounded. Hence, the

interval [0, 1] is compact, and the m-dimensional simplex is compact, too. What are not

compact?

Let T be a subset of Rm. We say that T is convex iff for any x, y ∈ T and λ ∈ [0, 1],

the convex combination λx+ (1− λ)y belongs to T.

Example 5.5. The intervals [0, 1] and [0,+∞) are convex, but the union [0, 1)∪ (1, 2] is

not convex.

Example 5.6. The m -dimensional simplex ∆m is convex.

Now, let f be a function from T to T. We say that f is continuous iff for any sequence

{xν} in T, if {xν} converges x0 ∈ T, then {f(xν)} converges f(x0).

Now, we can present Brouwer’s fixed point.

Theorem 5.4 (Brouwer (1908?)). Let T be a nonempty compact convex subset of

Rm, and let f be a continuous function from T to T. Then f has a fixed point x0 in T,

i.e., f(x0) = x0.

Example 5.7. The 1-dimensional version of Brouwer’s fixed point theorem is depicted

in Figure 5.2. What are fixed points in this figure?

Some of you learned the intermediate value theorem in the calculus class:

Intermediate Value Theorem. Let f be a continuous function from the closed interval
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[a, b] to R. Let f(a) > f(b) (f(a) < f(b)). For any value y0 with f(a) > y0 > f(b)

(f(a) < y0 < f(b)), there is a c ∈ [a, b] such that f(c) = y0.
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5.3 The Best-Response Diagram

For a 2-person game with two pure strategies for each player, it is possible calculate all

the Nash equilibria by the best response diagram. Consider the matching pennies:

s21 s22

s11 (1,−1) (−1, 1)

s12 (−1, 1) (1,−1)

We denote x11 by p and x21 by q. Then, a mixed strategy pair (x1, x2) is written as

((p, 1− p), (q, 1− q)).

Then, we abbreviate the payoff functions ĥ1((p, 1−p), (q, 1−q)) and ĥ2((p, 1−p), (q, 1−q))

as

ĥ1(p, q) and ĥ2(p, q).

Then we can calculate

ĥ1(p, q) = pq + (−1)p(1− q) + (−1)(1− p)q + (1− p)(1− q) (21)

= 4pq − 2p− 2q + 1

= p(4q − 2)− 2q + 1.

Now, we are ready to obtain the best response correspondence.

Recall that player 1 controls p but q is just given for him. To maximize the last term

of (21)by controlling p, we have the following condition:

4q − 2 > 0 =⇒ p = 1

4q − 2 = 0 =⇒ p is arbitrary

4q − 2 < 0 =⇒ p = 0.

We depict this condition in Figure 5.4.
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We repeat the parallel calculation for player 2 : First, we have

ĥ2(p, q) = (−1)pq + p(1− q) + (1− p)q + (−1)(1− p)(1− q) (22)

= −4pq + 2p+ 2q − 1

= q(−4p+ 2) + 2p− 1.

Then, we have the condition for the best response:

−4p+ 2 > 0 =⇒ q = 1

−4q + 2 = 0 =⇒ q is arbitrary

−4q + 2 < 0 =⇒ q = 0.

Again, we depict this condition in the Figure 5.4.

Question 5. Obtain the Nash equilibria in the Battle of the Sexes within mixed strategies,

using the best-response diagram.

s21 s22

s11 (2, 0) (0, 0)

s12 (0, 0) (1, 2)

Question 6. Obtain the Nash equilibria in the Prisoner’s Dilemma within mixed strate-

gies, using the best-response diagram.

s21 s22

s11 (5, 5) (1, 6)

s12 (6, 1) (3, 3)
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5.4 A Game with Incomplete Information

Usually, a person does not know other people’s preferences, while he himself knows his own

preferences. This idea is described by a game with incomplete information, formulated

by Harsanyi (1967). Here, we consider only one example.

Let us denote the Prisoner’s Dilemma and the Battle of the Sexes by (g1, g2) and

(h1, h2), respectively. The game with incomplete information is formulated as

(1): the chance move chooses one pair from {(g1, g2), (g1, h2), (h1, g2), (h1, h2)} with the

same probability 1/4;

(2): each player i = 1, 2 gets information about what his payoff is, i.e., gi or hi;

(3): then each player chooses (pure or mixed) strategy;

(4): both players get payoffs.

This game is formulated as an extensive game of Figure 5.5.

Question 7. How many pure strategies of each player does have in this game?

Question 8. Think about the normal form game for the extensive game of Figure 5.5.

The above game is also formulated as a normal form game: (N, {S1, S2, {h1, h2}) given

as:

(1): N = {1, 2};

(2): S1 = S2 = {(L,L), (L,R), (R,L), (R,R)} (since each player has two information

sets);

(3): (h1((L,L), (L,L)), h2((L,L), (L,L)) = 1
4
(5, 5) + 1

4
(5, 1) + 1

4
(2, 5) + 1

4
(2, 1) = (

14

4
,
12

4
)

(h1((L,R), (L,L)), h2((L,R), (L,L)) = 1
4
(5, 5) + 1

4
(5, 1) + 1

4
(6, 0) + 1

4
(0, 0) = (

11

4
,
6

4
)

(h1((R,L), (L,L)), h2((R,L), (L,L)) = 1
4
(6, 1) + 1

4
(6, 0) + 1

4
(2, 5) + 1

4
(2, 1) = (3.5, 1.5)

(h1((L,R), (L,R)), h2((L,R), (L,R)) = 1
4
(5, 5) + 1

4
(1, 0) + 1

4
(6, 0) + 1

4
(1, 2) = (

13

4
,
7

4
)

· · ·
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(h1((R,R), (R,R)), h2((R,R), (R,R)) = 1
4
(3, 3) + 1

4
(3, 2) + 1

4
(1, 3) + 1

4
(1, 2) = (2, 5)

(L,L) (L,R) (R,L) (R,R)

(L,L) (3.5, 3)

(L,R) (
13

4
,
7

4
)

(R,L) (3.5, 1.5)

(R,R) (2, 5)
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5.5 The Region of Attainable Expected Payoffs

In game theoretical decision making, it is a basic assumption that each player makes

independent choice. In the case of mixed strategies, each player uses an independent

mixed strategy. This independence choice may lead to a mathematical interesting problem

of the region of the attainable expected payoffs. In this subsection, we will discuss this

fact.

First, consider the Prisoner’s Dilemma of Table 1:

Table 1 Table 2: Battle of the Sexes

s21 s22

s11 (5, 5) (1, 6)

s12 (6, 1) (2, 2)

s21 s22

s11 (2, 1) (0, 0)

s12 (0, 0) (1, 2)

When players 1 and 2 use mixed strategies (p, 1 − p) and (q, 1 − q), the pair of their

expected payoffs is given as:

(ĥ1(p, q), ĥ2(p, q)) = pq(5, 5) + p(1− q)(1, 6) + (1− p)q(6, 1) + (1− p)(1− q)(2, 2)

= p[q(5, 5) + (1− q)(1, 6)] + (1− p)[q(6, 1) + (1− q)(2, 2)].

First, look at two expressions: q(5, 5) + (1− q)(1, 6) and q(6, 1) + (1− q)(2, 2). The first

expression q(5, 5) + (1 − q)(1, 6) is the convex combination of the two points (5, 5) and

(1, 6) with weights q and 1 − q. This is depicted in Figure 5.6 with q = 1
3
. Also, the

expected payoff axes are taken as u1 and u2.

Question 9. Where is the location of q(6, 1) + (1− q)(2, 2) in Figure 5.6?

Now, consider the pair of final expected payoffs: p[q(5, 5)+(1−q)(1, 6)]+(1−p)[q(6, 1)+

(1− q)(2, 2)]. It is the convex combination of the two points A(q) = [q(5, 5)+(1− q)(1, 6)]

and B(q) = [q(6, 1) + (1− q)(2, 2)] with weights p and 1− p. When p = 2
3
, it is depicted

in Figure 5.6.
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When p varies from 0 to 1, the point of the pair of expected payoffs moves from B(q)

to A(q). When q varies from 0 to 1,the point pA + (1 − p)q moves from the base line to

the upper line of the parallelogram. Therefore, all points in the region determined by the

four points are achievable with some strategies (p, 1− p) and (q, 1− q). One consequence

is that the set of achievable points is a convex set.

Question 10. Calculate the Nash equilibrium within mixed strategies in the above

Prisoner’s Dilemma. Plot the payoff vector given by the NE.

Now, consider the Battle of the Sexes: When players 1 and 2 use mixed strategies

(p, 1− p) and (q, 1− q), the pair of their expected payoffs is given as:

(ĥ1(p, q), ĥ2(p, q)) (23)

= pq(2, 1) + p(1− q)(0, 0) + (1− p)q(0, 0) + (1− p)(1− q)(1, 2)

= p[q(2, 1) + (1− q)(0, 0)] + (1− p)[q(0, 0) + (1− q)(1, 2)].

Draw the diagram of the region of attainable payoffs following the above procedure using

the formula (23).

Question 11. For the Battle of the Sexes, the region of attainable payoffs is not convex.

Think about why.

Question 12. Calculate the Nash equilibrium within mixed strategies in the Battle of

the Sexes. Plot the payoff vectors given by those equilibria.

Consider (23). We denote (ĥ1(p, q), ĥ2(p, q)) by (u1, u2). Then a pair of expected

payoffs achievable by a mixed strategy pair is expressed by

u1 = 3pq − p− q + 1 (1)

u2 = 3pq − 2p− 2q + 2 (2)

for some p ∈ [0, 1] and q ∈ [0, 1]. Our interest is to consider what region is generated by

such a pair (u1, u2).
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From (1) we have p = (u1 + q − 1)/(3q − 1) assuming q 6= 1/3. Plugging this to (2),

we have

u2 =
u1 + q − 1

3q − 1
(3q − 2)− 2q + 2,

which is changed into

0 = −3q2 + q(3u1 − 3u2 + 3) + (−2u1 + u2). (24)

When the simultaneous equation of (1) and (2) has a solution, equation (24) has also a

solution. We regard (24) as an quadratic equation with an unknown q. Then the condition

for this quadratic equation to have a solution is:

(3u1 − 3u2 + 3)2 − 4× (−3)× (−2u1 + u2) ≥ 0.

Sometimes, (24) has a unique solution. The condition for a unique solution is:

9u2
1 + 9u2

2 − 18u1u2 − 6u1 − 6u2 + 9 = 0, that is, (25)

3u2
1 + 3u2

2 − 6u1u2 − 2u1 − 2u2 + 3 = 0.

This is the equation describing the envelop curve determined by (1) and (2).

Coordination: Now, let us allow the two players to coordinate their probability distri-

butions. That is, they can use a joint strategy. They have now only one strategy set. In

the case of Battle of the Sexes, they have

{(α1, α2, α3, α4) : α1 + α2 + α3 + α4 = 1 and α1, α2, α3, α4 ≥ 0}. (26)

Here, (α1, α2, α3, α4) means a probability distribution so that (s11, s21), (s11, s22), (s12, s21)

and (s12, s22) are chosen with probabilities α1, α2, α3, α4, respectively. This set is described

as

∆(S1 × S2). (27)

Now, the set ∆(S1 × S2) differs from ∆(S1)×∆(S2).

Question 13. Depict the sets ∆(S1) ×∆(S2) and ∆(S1 × S2) in geometric ways. Also,

∆(S1)×∆(S2) can be regarded as a (proper) subset of ∆(S1 × S2). Think about why.
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Now, consider the attainable set of payoff vectors: For a 2-person game with 2 pure

strategies for each player, the attainable set by joint strategies are given as

U(G) = {α1a
1 + α2a

2 + α3a
3 + α4a

4 : (α1, α2, α3, α4) ∈ ∆(S1 × S2)}, (28)

where a1 = (h1(s11, s21), h2(s11, s21)), a2 = (h1(s11, s22), h2(s11, s22)), a3 = (h1(s12, s21),

h2(s12, s21)) and a4 = (h1((s12, s22), h2(s12, s22)).

Question 14. Prove that U(G) is a convex subset of R2.

When we allow only independent mixed strategies, the attainable set becomes

UI(G) = {pqa1 + p(1− q)a2 + (1− p)qa3 + (1− p)(1− q)a4 (29)

: (p, 1− p) ∈ ∆(S1) and (q, 1− q) ∈ ∆(S2)}.

Question 15. Give a game where the set UI of attainable payoffs without coordination

is nonconvex.
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