Epistemic Logic and Game Theory

Tai-Wei Hu

Kellogg School of Management, Northwestern University

T-W Hu (Kellogg NU)

epistemic foundations

3 June 2, 2011 1 / 18

Image: Image:

- ∢ ≣ ▶ 3

Rationality in economics

Dimensions in perfect rationality

- Knowledge of preference/environment
 - knowledge of potential needs
 - knowledge of potential goods
 - knowledge of the causal relation b/t goods and satisfaction of needs
- Logical ability
 - perfect ability to conduct logical inferences
 - perfect ability to make contingent plans
 - free from logical inconsistency

Logic and Economics

Bounded rationality

- Economics of information/knowledge
 - incomplete information about taste or goods
 - information processing
 - incentive structures
- Complexity and epistemic logic
 - imperfect ability of logical inferences
 - imperfect ability to contemplate all contingent plans

Classical Logic

Formal model of logical inference

- precise meaning of true thoughts
- *theory* of theories

Logical inferences and 'theorems' as objects of study

- formalize the notion of 'valid argument'
- formalize the notion of 'proofs'

Language in CL

Primitive symbols

- Propositional variables $PV = \{p_0, p_1, ..., p_k, ...\}$
- Logical connectives: \neg , \Rightarrow
- Belief operators: $B_1, B_2, ..., B_n$
- Parentheses: (,)

Formulas

- (F1) $p \in PV$ is a formula
- (F2) if A and B are formulas, so are $(\neg A)$, $(A \Rightarrow B)$, and $B_i(A)$
- (F3) every formula is obtained by a finite number of applications of (F1) and (F2)
- a formula is nonepistemic if it contains no $B_1, ..., B_n$

The set of formulas is denoted $\mathcal P$ and set of nonepistemic formulas is denoted $\mathcal P^n$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Classical Semantics

A model is a function $\kappa : PV \to \{\top, \bot\}$

- V_{κ} extends κ to \mathcal{P}^n
 - ▶ for $p \in PV$, $V_{\kappa}(p) = \top$ if and only if $\kappa(p) = \top$
 - $V_{\kappa}(\neg A) = \top$ if and only if $V_{\kappa}(A) = \bot$
 - ▶ $V_{\kappa}(A \Rightarrow B) = \top$ if and only if $V_{\kappa}(A) = \bot$ or $V_{\kappa}(B) = \top$
- κ is a model for a set Γ of formulas if for all $A \in \Gamma$, $V_{\kappa}(A) = \top$
- $\Gamma \models A$ if and only if for every model κ of Γ , $V_{\kappa}(A) = \top$

A formula A is *valid*, denoted $\models A$, if and only if $V_{\kappa}(A) = \top$ for every model κ

イロト 不得 とうせい かほとう ほ

Axioms and inference for CL

Axiom schemata and inference rule

Axioms

• Inference Rule: from $(A \Rightarrow B)$ and A infers B

Abbreviations

- $A \lor B$ stands for $\neg A \Rightarrow B$
- $A \wedge B$ stands for $\neg(\neg A \lor \neg B)$

•
$$A \equiv B$$
 stands for $(A \Rightarrow B) \land (B \Rightarrow A)$

Proofs in CL

A proof of A from a set of formulas Γ is a finite tree such that

- each node is associated with a formula in \mathcal{P}^n
- a leaf is either an axiom of a formula in Γ
- adjoining nodes together form an instance of the inference rule
- A is associated with the root

If there is a proof for A from Γ , we say that A is *provable* from Γ , denoted by $\Gamma \vdash A$

- A is a theorem if there is a proof for A
- theorems and proofs as objects of study

Completeness and soundness

We say that a set of formulas Γ is *inconsistent* if $\Gamma \vdash (C \land \neg C)$ for some C

Theorem (Completeness and soundness for CL) Let Γ be a set of formulas in \mathcal{P}^n and A be a formula. (1) $\Gamma \vdash A$ if and only if $\Gamma \models A$. (2) There is a model κ for Γ if and only if Γ is consistent.

Remarks.

- Assertions (1) and (2) are equivalent
- The 'only if' part is called *soundness*, and the 'if' part is called *completeness*.
- Equivalence between provability and validity
- Implies that propositional CL is *decidable*

- 4 同 6 4 日 6 4 日 6

Epistemic Logics

Epistemic axioms and inference rule

- K: $B_i(A \Rightarrow C) \Rightarrow (B_i(A) \Rightarrow B_i(C))$
- D: $\neg B_i(\neg A \land A)$
- T: $B_i(A) \Rightarrow A$
- 4: $B_i(A) \Rightarrow B_i(B_i(A))$
- 5: $\neg B_i(A) \Rightarrow B_i(\neg B_i(A))$
- Necessity: from A infers $B_i(A)$

Various epistemic logics:

- K^n : CL + K + Nec
- KD^n : $K^n + D$; KT^n : $K^n + T$
- $KD4^n$: $KD^n + 4$; $S4^n$: $K4^n + T$
- $KD45^n$: $KD4^n + 5$; $S5^n$: $S4^n + 5$

- 4 伊 ト 4 ヨ ト - ヨ - りへへ

Interpretation and evaluation of epistemic axioms

Basic principles for beliefs

- (G) PLi believes A iff i has an argument for A from basic beliefs
- (G1) *i* has reasoning ability described by CL
- (G2) *i* has introspection ability on his own ability described by (G1) and (G2)
- (G3) when thinking about other's beliefs, *i* assumes (G1-G3) for other players

Correspondence between basic principles and axioms

- $\bullet~(G1)$ corresponds to knowledge of logical axioms (L1-L3) and (K)
- (G2) corresponds to *KD*4 for single players
- (G1-G3) corresponds to *KD*4^{*n*}

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Kripke Semantics

A Kripke frame is a list $\mathcal{K} = (W, R_1, ..., R_n)$:

- W is the set of possible worlds
- R_i is a binary relation on W, interpreted as the *accessibility relation*.

A Kripke model is a pair (\mathcal{K}, σ) of a frame and an assignment $\sigma : W \times PV \to \{\top, \bot\}$, which can be extended to $W \times \mathcal{P}$ as follows:

• if $p \in PV$, then $(\mathcal{K}, \sigma, w) \models p$ iff $\sigma(w, p) = \top$

•
$$(\mathcal{K}, \sigma, w) \models \neg A$$
 iff $(\mathcal{K}, \sigma, w) \nvDash A$

- $(\mathcal{K}, \sigma, w) \models A \Rightarrow B$ iff $(\mathcal{K}, \sigma, w) \nvDash A$ or $(\mathcal{K}, \sigma, w) \models B$
- $(\mathcal{K}, \sigma, w) \models B_i(A)$ iff $(\mathcal{K}, \sigma, w) \models A$ for all u such that wR_iu

▲口▶ ▲掃▶ ▲ヨ▶ ▲ヨ▶ ヨー のなべ

Epistemic axioms and conditions on accessibility

- No condition $\leftrightarrow K$
- Seriality $\leftrightarrow D$
 - for any $w \in W$, there exists some u such that wR_iu
- Reflexibility $\leftrightarrow T$
 - for any $w \in W$, wR_iw
- Transitivity \leftrightarrow 4
 - ▶ for any $u, v, w \in W$, wR_iu and uR_iv imply wR_iv
- Euclidean \leftrightarrow 5
 - for any $u, v, w \in W$, wR_iu and wR_iv imply uR_iv

Soundness and completeness

Theorem

 $\vdash_{KD4^n} A$ if and only if $(\mathcal{K}, \sigma, w) \models A$ for any Kripke frame \mathcal{K} and any assignment σ and any $w \in W$ such that R_i is serial and transitive for all *i*.

Remarks.

- the theorem holds for any epistemic logic we listed
- the inference is made by the *outside observer*; however, a parallel version for each player's mind is possible

Decision criterion and predictions

Consider the following criteria for decisions and predictions:

- (N1): player 1 chooses his best strategy against *all* of his predictions about player 2's choice based on (N2)
- (N2): player 2 chooses his best strategy against *all* of his predictions about player 1's choice based on (N1)

Remarks.

- Ideal criterion leads to circular definition
- Common knowledge is involved to obtain a solution for this criterion
- Alternative:
 - play a default strategy
 - dominant strategies
 - best response against dominant strategies
 - play Nash equilibrium strategies

Common Knowledge Logic

Let C be the common knowledge operator

Syntax

- axiom and inference rule
 - ► (CA) $C(A) \Rightarrow A \land B_1(C(A)) \land ... \land B_n(C(A))$
 - (CI) from $D \Rightarrow A \land B_1(D) \land ... \land B_n(D)$ infer $D \Rightarrow C(A)$

• if
$$\vdash D \Rightarrow B_e(A)$$
 for all $e = (i_1, ..., i_m)$, then $\vdash D \Rightarrow C(A)$

Semantics

• $(\mathcal{K}, \sigma, w) \models C(A)$ if and only if $(\mathcal{K}, \sigma, w) \models A$ for all u reachable from w, i.e., for all u such that there is a sequence $w = w_0, w_1, ..., w_m = u$ with the property that for all k, $w_k R_j w_{k+1}$ for some j

Soundness and completeness holds in the common knowledge logic

イロト 不得 トイヨト イヨト 二日

Epistemic conditions for Nash theory

(N1) and (N2) can be formalized as following:

• (Ni1)
$$I_i(s_i) \Rightarrow (\bigvee_{s_{-i} \in S_{-i}} I_{-i}(s_{-i}))$$

• (Ni2) $I_i(s_i) \Rightarrow B_i(I_i(s_i))$

• (Ni3)
$$I_i(s_i) \Rightarrow \bigwedge_{s_{-i} \in S_{-i}} (I_{-i}(s_{-i}) \Rightarrow \text{Best}_i(s_i; s_{-i}) \land B_i(I_{-i}(s_{-i})))$$

•
$$(Ni) = (Ni1) \land (Ni2) \land (Ni3), i = 1, 2$$

Theorem

Let G be a 2-person game with interchangeability in pure strategies. (1) $C(N1 \land N2)$, RN, $C(g) \vdash \wedge_{s_1,s_2}[I_1(s_1) \land I_2(s_2) \equiv C(Nash(s_1, s_2))]$. (2) for i = 1, 2, $C(N1 \land N2)$, RN, $C(g) \vdash \wedge_{s_i}[I_i(s_i) \equiv \vee_{t_{-i}}C(Nash(s_i; t_{-i}))]$.

イロト イポト イヨト イヨト 二日

Conclusion

Ex ante decision making in games: the idealized case

- Nash solution is a result of
 - common knowledge of game structure and payoffs
 - common knowledge of criteria for decision and prediction
 - perfect logical abilities
 - unbounded ability in interpersonal inferences
- but Nash solution may not exist

Bounded rationality

- Lack of common knowledge
- Complexity of logical inferences
- Complexity of interpersonal inferences