
zTree
Zurich Toolbox for Readymade Economic Experiments

Filip Vesely
University of Wisconsin - Milwaukee

Print Slides: 1,3,4,6,16,29,36,39-42,44-47,49-60,62-66,68,70,72,74,76-83,85-87,89-94,101-103,107,109,113,115,117,119-124,126,130-
134,136,138,140,142,144,146-148,150,152,154-156,158,160-163,165,167,169-171,174-178,180-181,183-187,190-193,199,200,202,203,206-221,223-311

What is zTree for?

Designed for simple games, that do not require:

o detailed timing (time is measured in seconds)
o major graphical input/output
o unexpected changes in design once the experiment is in progress

Designed for simple experimenter that does not have:

o competent programmers that can write ad hock programs
o time to design ad hock programs
o ability to specify full experiment without pilots, modifications, …

Zurich Toolbox for Readymade Economic Experiments

Institute for Empirical Research in Economics:
http://www.iew.uzh.ch/ztree/howtoget.php

How to get zTree?
Manuals:

o 2.1 Tutorial Manual (2001): http://www.iew.uzh.ch/ztree/ztree21tutorial.pdf
o 2.1 References (2006): http://www.iew.uzh.ch/ztree/ztree21ref.pdf
o 3.x Wiki: https://www.uzh.ch/iew/ztree/ssl-dir/wiki/

How does it work?

Two programs:

zTree
o programming editor
o experiment server

zLeaf
o client program for subjects’ computers
o client program for the experimenter’s input during the game

zTree step-by-step:

Step 2: Open zTree,

Step 1: Install “toolbox” programs.
zTree and zLeaf (for testing)
for you. zLeafs for subjets.

zLeaf.exe

zLeaf.exe

Step 3: Download, create, save your
- program (e.g.Trust.ztt)
- questionnaire (e.g.Q.ztq)

zLeaf.exe

zLeaf.exe

zLeaf.exe

zTree.exe

zLeaf.exe

Trust.ztt

Q.ztq

Step 4: Open zLeaf on each subjet’s
computer (or on your computer
if only testing.) + One for manual changes of parameters if needed.

zLeaf.exe

zLeaf.exe

zLeaf.exe

zLeaf.exe

zLeaf.exe

Subjects

Step 5: Seat the subjects, go through instructions (if not part of the program)

Step 6: Start your program (Trust.ztt)

Trust.ztt

zTree step-by-step:
Step 7: Subjects make decisions zLeaf.exe

zLeaf.exe

zLeaf.exe

zLeaf.exe

zLeaf.exe

zTree.exe

zLeaf.exe

Trust.ztt

Q.ztq

zLeaf.exe

zLeaf.exe

zLeaf.exe

zLeaf.exe

zLeaf.exe

Subjects

Trust.ztt

decisions travel to server
program records

decisions in tables
some information is

being passed to subjects

090525_1405.xls
090525_1405.gsf

Step 8: Experiment ends. (Most tables in zTree disappear.)
You can run another experiment or questionnaire.

You can observe the tables
You can use your zLeaf to

change parameters

Computer records the tables in
*.xls file every period
*.gsf file continuously

name is given time (Trust.ztt)
program started.

zTree step-by-step:
Step 9: If you run another

experiment, data
continue are being
collected into same files

(=>You cannot change
of participants unless
all programs restart)

zLeaf.exe

zLeaf.exe

zLeaf.exe

zLeaf.exe

zLeaf.exe

zTree.exe

zLeaf.exe

Trust.ztt

Q.ztq

zLeaf.exe

zLeaf.exe

zLeaf.exe

zLeaf.exe

zLeaf.exe

Subjects

Trust.ztt

090525_1405.xls
090525_1405.gsf

Trust2.ztt

Step 10: If you run a questionnaire
a file with answers and
a file with names & payments
are created.

090525_1405.adr
090525_1405.pay

Step 11: use *.xls, *.pay or “session
table” to pay subjects so they leave

Session

Step 12: Close zLeafs (ALT+F4)
Close zTree (!!!Make sure all zLeafs

Keep *xls, *adr, *pay files completed their tasks so Trust.ztt is not running !!!)

090525_1405.sbj

Install “toolbox” programs.
zTree and zLeaf (for testing)
for you. zLeafs for subjets.

• Since there will be many files added each time you open zTree,
create a new directory for it.

• Copy zTree and zLeaf there.

• Create a shortcut for both.

• Go to properties to change
language to english =en

(chinese = cn)

by adding “/language en”

Step 1:

• http://www.go.to/econ/zTree
• Since there will be many files added each time you open zTree,

create a new directory for it.

• Copy zTree and zLeaf there.

Step 1• Go to properties to change language to english =en
(chinese = cn) by adding “/language en”

• if you use multiple zLeaf for testing, create multiple
shortcuts with “/name A”, “/name B” and so on

• Go to properties to change language to english =en
(chinese = cn) by adding “/language en”

• if you use multiple zLeaf for testing, create multiple
shortcuts with “/name A”, “/name B” and so on

Step 1

• In a big network or if you ran multiple zTrees on
same network simultaneously add a server’s IP
address to zLeaf as well:

/language en /name A /server 144.214.99.243

• if you want to open zTree and multiple zLeafs with one click you can
create a *.bat file (= a text file ending with “.bat”) like this:
start ztree /language en
PING 1.1.1.1 -n 1 -w 2000 >NUL
start zleaf /size 640x480 /position 0,0 /language en/name A
PING 1.1.1.1 -n 1 -w 500 >NUL
start zleaf /size 640x480 /position 640,0 /language en/name B
PING 1.1.1.1 -n 1 -w 500 >NUL
start zleaf /size 640x480 /position 0,480 /language en/name C
PING 1.1.1.1 -n 1 -w 500 >NUL
start zleaf /size 640x480 /position 640,480 /language en/name D

Alternatively, replace “server.eec” with the IP address in it.

• If you run more than one zTree, you can use
different chanels (/chanel CH) to indicate what zTree
connects to which zLeafs (CH is a number)

Step 1

• You can also direct different files into different directories:
/datadir DIR for xls (data) file
/adradir DIR for adr (address) file
/gsfdir DIR for gsf (gamesafe) fille

…

• if you have older programs (from version 2.x) do not mix them with
the new ones as they will not work.

Step 2: Open zTree (through the shortcut)

Step 3: download, create, save your program (e.g. PD.ztt)

We will write a program for PD experiment C D
subjects earn $10 + half of the these: C 5,5 0,8

D 8,0 2,2

(1) two groups of two players playing once

(2) two groups of two players playing once or more…

(3) rematch agents based on last period earnings
(highest with 2nd highest and so on,…)

Step 3

PD game is defined
Subjects are separated into pairs (+3)
Subjects make a choice

Calculate the payoffs
Subjects observe earnings
You Decide if you want another period (+2)

o Subjects wait for each other

Background

Stage 1 waiting

Stage 2 active

Stage 1 active

program
program
active screen

active screen
program

active screen

passive screen

STRUCTURE
Background

tables
programs
active screen
waiting screen

Stage 1
programs
active screen
waiting screen

Stage 2
…

Background

The common elements of all stages
may be inserted and defined here

In the background itself, when you
double click it, some central
parameters of the treatments can be
viewed and changed.

The programs of the background are
run at the beginning of a period. They
are used for defining constants.

General Parameters

We will use 5 zLeafs

Subjects will receive

$10 (Swiss francs) for showing

+ $ 1 for each 2 experiment units

5

5

Predefined tables cannot be changed Predefined tables cannot be changed
but you can make your own table.

Tables:
globals: One per period

subjects: One per period per subject

summary: One per treatment start of
your program (e.g. PD.ztt)

contracts: One per period per input

session: One per session
adds on until zTree restarted
can be seen even if your

program is not running

globals:
Period (firs of three trials = -2)
NumPeriods
RepeatTreatment (=0)

subjects:
Period
Subject
Group
Profit
TotalProfit(adds from last period)

Participate (0=> skip all stage)
LeaveStage (0=> go to stage end)

globals:
X, x, x1, …Xx[xX]

OLDglobals.find(X);

subjects:
Y, y, y1, …Y2[Y3], X

OLDsubjects.find (Subject>N , Y)

summary:
Period
+ your aggregates to be observed

during experiment

contracts:
Period + contracts & other

multiple actions per period

sessions:
Subject
FinalProfit (<=Subject’s TotalProfit)

summary

contracts

sessions:
Subject
FinalProfit (<=TotalProfit in $)
ShowUpFee
ShowUpFeeInvested (1=yes)

MoneyAdded
MoneyToPay

(=FinaProfit+ShowUpFee+MoneyAdded)
MoneyEarned(=FinaProfit+ShowUpFee)

Values of variables in tables can be
added and changed in programs

How do we add programs?
Click once onto last table

stages
buttons

Since the same variable can be used in
different tables we need to specify what table
we will work with.

You can read “globals table” variables from
“subjects table” program unless you used the
same names…

You can always ask for variables from other
tables (will show later)

Condition:

Program will / will not execute

Owner Variable: X
Used for contracts, limits records to
those of Subject == X where
X is variable from contract table

In this program, we will

find number of subjects

decide number of groups

define constants
so we can change them easily for
different treatments

We could also define strategies by names

e.g. cooperation = 1;
defection = 0;

but we will just remember this.

subjects.count();

subjects.count(Subject<5);

TABLE FUNCTIONS:
T.count(a)

T.average(a,x) first value: T.find(a,x)

T.maximum(a,x) T.median(a,x)

T.minimum(a,x) T.sum(a,x)

T.product(a,x) T.stddev(a,x)

T.regressionslope(a,x)

T = table
x = variable
a = condition (i.e. Group==Subject)

FUNCTIONS:

if(a, x, y) (ie. Equals to y if a is FALSE)

abs(x) sqrt(x) power(x,y)
sin(x) random() ∈ [0, 1]

min(x,y) max(x,y) mod(x,y)
round(x,y) = multiples of y
roundup(x,y) = nearest higher (-3.2 => -3)

and(a,b) or(a,b) not(a)

gettime() # of seconds since computer
… was turned on

CONSTANTS: TRUE FALSE

CONSTANTS: TRUE FALSE

OPERATORS:

+ - * /
< <= == != >= >

& (==logical and) | (==logical or)

SCOPE OPPERATORS:

\ globals table: e.g. \SUBS
: next higher scope

CONSTANTS: TRUE FALSE

OPERATORS:

+ - * /
< <= == != >= >

& (==logical and) | (==logical or)

SCOPE OPPERATORS:

\ globals table: e.g. \SUBS

: next higher scope
e.g. “:Subject” is ID of subject that
asked to see a table

(you will see example later)

Click on [+] to see details,
Click on [-] to see the big picture

Now let’s group the subjects.

Here we will create
a program that
groups subjects
into pairs.

zTree can do it
automatically,

Here we will create
a program that
groups subjects
into pairs.

zTree can do it
automatically

Here we will create
a program that
groups subjects
into pairs.

zTree can do it
automatically

I DO NOT USE THIS

Here we will create
a program that
groups subjects
into pairs.

zTree can do it
automatically

I DO NOT USE THIS

Here we will create
a program that
groups subjects
into pairs.

zTree can do it
automatically

or manually

I DO NOT USE THIS

Here we will create
a program that
groups subjects
into pairs.

TABLE FUNCTIONS
FUNCTIONS
CONSTANTS
OPERATORS

STATEMENTS

STATEMENTS (#):

x=y;

if (a) {#1;} elsif {X2;}, elsif {X3;} ….

while (a) {#1}

repeat {#1} while (a); does #1 at least once\

HEADER BOX

A rectangular part of zLeaf’s
screen that can show

Period & Time

HEADER BOX

A rectangular part of zLeaf’s
screen that can show

Period & Time

PERIOD TIME PERIOD TIME

PERIOD TIME PERIOD TIME

PERIOD TIMESUBJECT

Variable will show rounded to
multiples of Layout.

Click on “Input”, you will see
additional requirements if you
were to ask subject to create
the variable.

PERIOD TIMESUBJECT

Please wait until the
experiment continues

WAITING SCREEN ACTIVE SCREEN

PERIOD TIMESUBJECTSUBJECT

Please wait until the
experiment continues

WAITING SCREEN ACTIVE SCREEN
PERIOD TIMESUBJECT

Please wait until the
experiment continues

WAITING SCREEN ACTIVE SCREEN

PERIOD TIMESUBJECTSUBJECT

Please wait until the
experiment continues

WAITING SCREEN ACTIVE SCREEN
PERIOD TIMESUBJECTSUBJECT

Please wait until the
experiment continues

WAITING SCREEN ACTIVE SCREEN

Now we will create stage where
subjects make their choice

Now we will create stage where
subjects make their choice

START: globals program
1st subject program

2nd subject program
3rd subject program

last subject program
summary program

Sequential Games

If no input =
YES if there are no actions to be

taken by subject
NO if subject is supposed to do

something

Now we will create two buttons that
subjects can click for cooperation or
defection.

Now we will create stage where
subjects make their choice

PERIOD TIMESUBJECT

X

Note that “Display conditions”
are actively checked while
subject is in “Active Screen”

“Display conditions” are check
on entry only in “Waiting screen”

PERIOD TIMESUBJECT

X

PERIOD TIMESUBJECT

Cooperate

PERIOD TIMESUBJECT

Cooperate

PERIOD TIMESUBJECT

Cooperate

PERIOD TIMESUBJECT

Cooperate

PERIOD TIMESUBJECT

Cooperate

PERIOD TIMESUBJECT

Cooperate

PERIOD TIMESUBJECT

Cooperate Cooperate

PERIOD TIMESUBJECT

Cooperate Cooperate

PERIOD TIMESUBJECT

Cooperate Defect

PERIOD TIMESUBJECT

Cooperate Defect

Programs must define each
variable and finish
before any question about it
is asked (in label, equation,
condition).
It is not necessary to define
all variables in background
programs, but you must be
careful.

PERIOD TIMESUBJECT

Cooperate Defect

PERIOD TIMESUBJECT

Cooperate Cooperate

How about the odd zLeaf?

It should not make any
decissions in Stage1.

Any alternative way to
do it? Yes, many.

Participate = 0;

OR

Group == 0;

OR

Participate = 1 - rounddown (Subject/(2*GRPS+1),1);

If (Group==0) {Participate = 0;}

What next?

Decisions were made.

Should subjects know?

Yes.
WE NEED A NEW STAGE!

We can leave it “If no input”
but change it to “Yes”

We need to wait for all
(actually at least for the rest
of each group, but…)

Now we need to find out
how did the rest of the
group played….

We will ask how many
cooperation choices were
done in subject’s group.

PCOOP (partner’s cooperation)

SCOPE OPERATOR “:”

Group==:Group

Alternative: PCOOP = Alternative: PCOOP =
subjects.find(and(same(Group),not(same(Subject))),COOP);

FUNCTION “if”

vs.

STATEMENT “if”

We will now place result
on subject’s screen.

Create STANDARD BOX.

PERIOD TIMESUBJECT

PERIOD TIMESUBJECT PERIOD TIMESUBJECT

You cooperated
and you earned
0 ECUs.

Embedded Variables:
functions and multiple
variables in one item.

<> … <Variable|Layout>

!text == text layout

PROGRAM (1) COMPLETED

Starting Five zLeafs …

I am going to use the bat file from
http://www.go.to/econ/zTree/SampleBats/ABCDEBigScreen.bat

1
0
1
0
0

1
0
1
0
0

5
2
5
2
0

5
2
5
2
0

8
0

-13
0
0

0
3
0

-19
0

2.5
1

2.5
1
0

12.5
11

12.5
11
10

12.5
11

12.5
11
10

√ (1) two groups of two players playing once

(2) two groups of two players playing once or more…

(3) rematch agents based on last period earnings
(highest with 2nd highest and so on,…)

Add a box for group==0 zLeaf in Stage2 Add a box for group==0 zLeaf in Stage2

Add a box for group==0 zLeaf in Stage2
Add an Item into box

Rich Text File: {rtf … \b …}

Add a box for group==0 zLeaf in Stage2
Add an Item into box
Add a button in into box

Add a box for group==0 zLeaf in Stage2
Add an Item into box
Add a button in into box
Add a program into button

Now we will wait for the treatment to end
and then we look at the data.

If you want your treatment start in period 5 (say you needed to restart
the experiment after 4 periods), put # of practice periods as –4.

In period x, RepeatTreatment=1 does not add a period, it starts a new
one period treatment in x+1 period…

The only issue: remember to check General Parameters before START.

√ (1) two groups of two players playing once

√ (2) two groups of two players playing once or more…

(3) rematch agents based on last period earnings
(highest with 2nd highest and so on,…)

// Grouping part 1

OldProfit = OLDsubjects.find(same(Subject),Profit) + random() * 0.49;

Period>0

Add this program to background

Drag this program from background to Stage1

// GroupingPart2

if (Period<=1) {

if (Subject <= GRPS) {Group = Subject;}

elsif (Subject <= 2*GRPS) {Group = Subject - GRPS;}

else {Group = 0;} }

else {Group=if(Subject<=2*GRPS,1+rounddown(subjects.count

(OldProfit>:OldProfit)/2,1),0);}

Drag this program from background to Stage1
and rewrite it as above.

Notice that we took advantage of
having programs for all subjects
played in background first.

Could we do it in one stage?

STATEMENTS (#): (continued)

T.do {#1;} does statement in a table T

example:

subjects.do {Group =Group +1;
if (Group>GRPS) {Group = 1;}}

T.new {#1;} creates a new record in table T (contracts or yours table)
(e.g. new offer is placed in auction)

Now, it is unlikely but possible that we will have more
than two subjects in a group. Let’s fix that...

We will repeat the whole grouping
procedure if largest group is more
than two:

repeat
{ xxxx; }

while (max(group) too big)

Now, it is unlikely but possible that we will have more
than two subjects in a group. Let’s fix that...

We will repeat the whole grouping
procedure if largest group is more
than two:

repeat
{ xxxx; }

while (max(group) too big)

STATEMENTS (#): (continued)

T.do {#1;} does statement in a table T

example:

subjects.do {Group =Group +1;
if (Group>GRPS) {Group = 1;}}

T.new {#1;} creates a new record in table T (contracts)
(e.g. new offer in auction)

--

array x[n]; creates an array of vars: x[1], x[2],..x[n]

--

later (n) do {#1;} does #1 n second later (if n>0)

later (n) repeat {#1;} does #1 n second later (if n>0)
refreshes value of n and repeats

How big is the Program File?

Very small.

You can export it into a text (importing helped with transfer from older
versions of zTree Programs.)

DIVORCE-CONSENSUS Program (68.25 pages)

PG program (5.5 pages)

Two types of subjects (A & B) are are randomly paired with each other.

Task:
Their task in period 1 (also every time when they are matched with
new counterparts in later periods) is to decide if they want to enter a
partnership starting from next period.
Once a partnership is formed, the task in each period is to decide if
they want to stay together with the same partner for at least one more
period.

Marriage Game Design

Entering, continuing and terminating a partnership can be facilitated by
negotiable transfer payments.

Either party can offer/request some payment to/from his/her
counterpart

- You requested 20, your counterpart requested 26.

- you cannot take the offer back after you send it
- you improve your offers from left to right
- your counterpart’s offers improve from right to left
- best counterparts offer: red button to accept

The “unattached” (singles)
Agreement => form a marriage
No agreement => matched with new counterparts next period.

The “attached” (married)
Agreement => continue together

(possibly under different payoffs)
Agreement => to divorce (=new counterparts)
No agreement=>

Unilateral Divorce Law: matched with new
counterparts next period.

Consensus Divorce Law: stay together

10% discounting of future utilities

Marriage Game Design

Partnership deteriorates
(with exogenous probability 2/9)

Stage 1 is better than Stage 2
Stage 2 is better than Stage 3

Tensions increases…

Balanced (Unbalanced)
Payoff Structure

Marriage Game Design

Partnership deteriorates
(with exogenous probability 2/9)

Stage 1 is better than Stage 2
Stage 2 is better than Stage 3

Tensions increases…

10% Discounting
(die ….

…and reborn as a single
in a new life [same game])

… 10% =>
with 11 or more pairs we could
guarantee that (divorced) agents
would be matched to different
people.

Balanced (Unbalanced)
Payoff Structure

Marriage Game Design

10% =>
with 11 or more pairs we could
guarantee that (single) agents
would be matched to different
counterparts.

TWO SINGLE PEOPLE =>

ZERO OR MORE THAN
TWO SINGLE PEOPLE =>

This pair dies with 10% prob.
1+ out of remaining 10+ pairs dies as well

Two pairs die with 50%+ probability

Marriage Game Design

10% =>
with 11 or more pairs we could
guarantee that (single) agents
would be matched to different
counterparts.

TWO SINGLE PEOPLE =>

ZERO OR MORE THAN
TWO SINGLE PEOPLE =>

TWO SINGLE PEOPLE =>

ZERO OR MORE THAN
TWO SINGLE PEOPLE =>

This pair dies with 10% prob.
1+ out of remaining 10+ pairs dies as well

All pairs die with 10%+ probability, GAME ENDS

This pair dies with 10% prob.
1+ out of remaining 10+ pairs dies as well

Two pairs die with 50%+ probability

PHASE ONE (35 periods)
(NEW PEOPLE BORN)

PHASE TWO (GAME ENDS)

Marriage Game Design M
arriage G

am
e D

esign

Each period,
matching
took several
seconds to
compute.

zLeafs can
only wait so
long before
they crash.

Here the
program was
cut into
pieces and
six stages
with empty
screens we
added.

Outline

1. Introduction

2. Simple Program (PD)

3. Simple Questionnaire

4. Design
(From Standard Box to Contracts, Chat and Graphics)

5. More Tips and Tricks and Examples

6. VRPD Game

Questionnaires

You can run a
questionnaire
at the end of
an experiment
Questionnaire
s can be
simple, just
names and
emails, or
involve more
complicated
surveys

QuestionnairesQuestionnaires

New Address
Form

Double-click on
“Address” and
- delete what you

do not need
- change to what
you do need

QuestionnairesQuestionnaires

New Address
Form

Double-click on
“Address” and
- delete what you

do not need
- change to what
you do need

QuestionnairesQuestionnaires

What you enter
into the blank will
correspond to
what the header
on the answer
blank will read;
for example, you
can use the
“Postal Code”
blank to gather
information about
National ID

Label on the “OK” Button

Questionnaires

Select “Adress”,
then go to
Questionnaire→
New Question
Form

You can add
items to this
question form,
just like you do
with a box in a
normal treatment

QuestionnairesQuestionnaires

Select “Adress”,
then go to
Questionnaire→
New Question
Form

You can add
items to this
question form,
just like you do
with a box in a
normal treatment

Questionnaires

Beside questions,
typical
information to
display might
include:

The variable
FinalProfit – total
earnings from the
experiment, not
including the
show-up fee

The variable
ShowUpFee
Create items
(with labels) to
display these
variables

QuestionnairesQuestionnaires

Beside questions,
typical
information to
display might
include:

The variable
FinalProfit – total
earnings from the
experiment, not
including the
show-up fee

The variable
ShowUpFee
Create items
(with labels) to
display these
variables

QuestionnairesQuestionnaires

Beside questions,
typical
information to
display might
include:

The variable
FinalProfit – total
earnings from the
experiment, not
including the
show-up fee

The variable
ShowUpFee
Create items
(with labels) to
display these
variables

Questionnaires

Beside questions,
typical
information to
display might
include:

The variable
FinalProfit – total
earnings from the
experiment, not
including the
show-up fee

The variable
ShowUpFee
Create items
(with labels) to
display these
variables

Questionnaires

Save it (Short.ztq)

Run it

Questionnaires

Save it (Short.ztq)

Run it

QuestionnairesQuestionnaires

DESIGN

Standard Box

1 2

3a
4

5

6 7

1. Label of the box (not shown to subjects)
2. Frame (with it, a box overlaps older graphics)
3. Size of the box, in points or percent of the remaining screen

Distance away from the (remaining) screen edge in points or
percent

4. Adjustment of the remaining box (whether to “cut off” the
screen above, below, to the left, or to the right of the current
box

5. Display Condition (if present, Boolean expression that must
be true in order for box to be shown)

6. Button Position (where to place buttons in this box)
7. Arrangement (how to arrange buttons)

3b

Outline

1. Introduction

2. Creating a Simple Program (PD)

3. Creating a Simple Questionnaire

4. More on Design
(From Standard Box to Contracts, Chat and Graphics)

5. More Tips and Tricks and Examples

6. VRPD Game

DESIGN

Standard Box

1 2

3a
4

5

6 7

1. Label of the box (not shown to subjects)
2. Frame (with it, a box overlaps older graphics)
3. Size of the box, in points or percent of the remaining screen

Distance away from the (remaining) screen edge in points or
percent

4. Adjustment of the remaining box (whether to “cut off” the
screen above, below, to the left, or to the right of the current
box

5. Display Condition (if present, Boolean expression that must
be true in order for box to be shown)

6. Button Position (where to place buttons in this box)
7. Arrangement (how to arrange buttons)

3b

DESIGN

Standard Box
Item

DESIGN

Standard Box
Item

Tells
program
that there
will be
embedded
variables
in this text

Regular
text Embedded

Variable

Variable
name

LayoutTells
program
that there
will be
embedded
variables
in this text

Regular
text Embedded

Variable

Variable
name

Layout

Embedded Variables:

Tells
program
that there
will be
embedded
variables
in this text

Regular
text Embedded

Variable

Variable
name

LayoutTells
program
that there
will be
embedded
variables
in this text

Regular
text Embedded

Variable

Variable
name

Layout

DESIGN

Standard Box
Item

<> Your endowment is <Endowment|1>
francs, you <Endowment|!text: 0=“lost a
lot of money”; 100=“did great”>

Tells
program
that there
will be
embedded
variables
in this text

Regular
text Embedded

Variable

Variable
name

LayoutTells
program
that there
will be
embedded
variables
in this text

Regular
text Embedded

Variable

Variable
name

Layout

Embedded Variables:

DESIGN

Standard Box
Item

<> Your endowment is <Endowment|1>
francs you <Endowment|!text: 0=“lost a
lot of money”; 100=“did great”>

WARNING the sentence is placed
in and if later the number
changes and does not fit then
only some digits are shown…

DESIGN

Standard Box
Item

<> Your endowment is <Endowment|1>
francs <Endowment|!text: 0=“lost a lot
of money”; 100=“did {rtf \b great }”>

WARNING: The sentence is placed in and if later
the number changes and does not fit then only
some digits are shown…

{rtf_} allows for: \fsN \cfN \sub
\super

\b \b0 \i \i0 \u \u0

\tab \par \bullet \line \strike

\ql \qc \qr

DESIGN

Standard Box
Item

DESIGN

Standard Box
Item

WARNING: Variable is recorded in a
table only after a regular button is hit

DESIGN

Standard Box
Item

Button

Buttons cannot go
before items.

You have to use
buttons to record
data in tables

You can use
buttons to exit
stages or execute
programs

DESIGN

Standard Box
Item

Checker
Button

Checker

DESIGN

Standard Box
Item

Checker
Button

Checker
Box

Container Box
(Standard Box
for Boxes only)

Standard Box

Container Box

History Box

Grid Box)

Calculator Box

Help Box

Header Box

Contract Creation Box

Contract List Box

Contract Grid Box

Message Box

Multimedia Box

Chat Box

Plot Box

DESIGN

Standard Box
Item

Checker
Button

Checker
Box

Container Box

History Box

DESIGN

Standard Box
Item

Checker
Button

Checker
Box

Container Box

History Box

Grid Box (table)

DESIGN

Standard Box
Item

Checker
Button

Checker
Box

Container Box

History Box

Grid Box (table)

Calculator Box

Help Box (text)

Header Box

DESIGN

Contract
Creation Box

DESIGN

Contract
Creation Box

Contract
List Box

The button executes program that may change the
selected record.

DESIGN

Contract
Creation Box

Contract
List Box

Contract
Grid Box

The button executes program that may change the
selected record.

grid

Records can be in columns or in rows.

DESIGN

Message Box

You can place at most one message box per screen. If
zTree sends a message (say you entered a wrong value
to Item), it will appear in the box and subject must click
OK to continue. This way, only one OK is needed for
multiple meassages.

Image: jpg, gif, png, bmp.
Movie: mpg, avi. Do not play movie or
Sound: wav, mp3. sound in waiting screen

Multimedia Box

DESIGN

Message Box

You can place at most one message box per screen. If
zTree sends a message (say you entered a wrong value
to Item), it will appear in the box and subject must click
OK to continue. This way, only one OK is needed for
multiple meassages.

Image: jpg, gif, png, bmp.
Movie: mpg, avi.
Sound: wav, mp3.

Multimedia Box

Chat Box Allows subjects to send text messages to each other.
The following example program will illustrate its use:

We will create a new program such that:

// Subjects only send messages to their own group
// Subjects only send messages to subjects with higher ID
// Subjects cannot send messages twice in a row
// Subject 3 is a listener only

DESIGN

Chat Box

(1) Add the first stage

(2) Add a “program” with contracts table there:
Number = 0;
Owner = -1;
Group = -1;

DESIGN

Chat Box

(3) In Stage’s Active Screen Create New Chat Box: CHATTER

(4) Subject!=3 (3 is only a listener, this is not his window)

(5) Name Input Variable (=Text), limit characters to 256 (so
excel can remember) and allow for 5 lines of text input.

DESIGN

Chat Box

(3) In Stage’s Active Screen Create New Chat Box: CHATTER

(4) Subject!=3 (3 is only a listener, this is not his window)

(5)Input Var (e.g. Text), limit characters to 256 (excel can
remember) and allow for 5 lines of text input and wrap.

DESIGN

Chat Box

(6) Owner<=Subject will limit observed messages to those
sent by yourself and subject with higher ID number

(7) <> < if(Owner == Subject, 1, 0)|!text:
1 ="Myself";
0 ="Subject <Owner|1>">: <Text|-1>

DESIGN

Chat Box

(6) Add a program into the box (with contracts table)
Owner =:Subject;
Group =:Group;
Number = contracts.maximum (Number)+1;

DESIGN

Chat Box

(6) Add a checker into the box (so subjects know why…)

(7) Find the owner of the latest contract from same group with
larger ID: Subject!=contracts.find(Number==

contracts.maximum(and(Owner<=::Subject,Group==::Group)
Number), Owner)

DESIGN

Chat Box

(6) Add a checker into the box (so subjects know why…)

(7) Find the owner of the latest contract from same group with
larger ID: Subject!=contracts.find(Number==

contracts.maximum(and(Owner<=::Subject,Group==::Group)
Number), Owner)

DESIGN

Chat Box

(6) Add a checker into the box (so subjects know why…)

(7) Find the owner of the latest contract from same group with
larger ID: Subject!=contracts.find(Number==

contracts.maximum(and(Owner<=::Subject,Group==::Group)
Number), Owner)

(8) Let the subject know.

DESIGN

Chat Box

(9) Finally add a listening chat for subject S3

<> Subject <Owner|1> : <Text|-1>

Owner

DESIGN

Chat Box

Program Completed. Ready to be tried. Note that
S1 can only speak once
S2 can at most speak twice (before and after S1)
S3 only listens
S4 can at most speak 4x and S5 at most 8x

PLOT Box

plotitems.ztt : Sample vector graphics items

draw.ztt : Manipulate graphics items

PLOT Box PLOT Box

PLOT Box PLOT Box

PLOT Box PLOT Box

PLOT Box PLOT Box PLOT GRAPH

PLOT Box PLOT INPUT PLOT Box PLOT INPUT

PLOT Box PLOT INPUT PLOT Box PLOT INPUT

PLOT Box PLOT INPUT (drag only <-->)

X0 Y0
X1 Y1
Xprime Yprime

Xprime= X1;
Yprime= Y0;

+ Program:
X=X+Xprime-X0;
Y=Y+Yprime-Y0;

DESIGN

Standard Box

1 2

3a
4

5

6 7

1. Label of the box (not shown to subjects)
2. Frame (with it, a box overlaps older graphics)
3. Size of the box, in points or percent of the remaining screen

Distance away from the (remaining) screen edge in points or
percent

4. Adjustment of the remaining box (whether to “cut off” the
screen above, below, to the left, or to the right of the current
box

5. Display Condition (if present, Boolean expression that must
be true in order for box to be shown)

6. Button Position (where to place buttons in this box)
7. Arrangement (how to arrange buttons)

3b

Outline

1. Introduction

2. Creating a Simple Program (PD)

3. Creating a Simple Questionnaire

4. More on Design
(From Standard Box to Contracts, Chat and Graphics)

5. More Tips and Tricks and Examples

6. VRPD Game

Storing Information
From Previous Periods

zTree remembers the value of globals and subjects
variables from one prior period prior only:

These previous values are stored in a
table called OLDtable; so, the previous
variables in the subjects table can be
called from the table called OLDsubjects

Longer histories?
Use summary or session’s table
Record a sequence of pat periods

Put the following at the beginning of the treatment:
i=1;
while (i <maxi) do {History1[i]=OLDsubjects.find(same(Subject),Current[i]);

History2[i]=OLDsubjects.find(same(Subject),History1[i]);
History3[i]=OLDsubjects.find(same(Subject),History2[i]);
History4[i]=OLDsubjects.find(same(Subject),History3[i]);
i=i+1}

// Current[i] = CurrentValues;

History4History3History2History1
Current
Value

1 Period
Ago

2 Periods
Ago

3 Periods
Ago

4 Periods
Ago

Storing Information
From Previous Periods

All variables must be defined (given values) in
programs before they can be read. The
exceptions are session variables that are
mentioned in Background.
Click on Session table, insert sessions
variable name (that was use in previous
treatment) in the bottom box. Variable will be
remember the value from the previous
treatment.

Storing Information
From Previous Treatments

Go to Treatments
=> Parameters
Table and click on a
chosen period.
Then you can
pause the session
by sending a
prompt (you can
also change
parameters for the
chosen period)

Pauses and Popup Windows
Between Periods

Pauses and Popup Windows
Between Periods

