Exercise for Expected Utility Theory

Tai-Wei Hu

December 16, 2019

1. Consider the expected utility theory presented in class, but with $C = \{c_1, c_2, c_3\}$. We assume that $c_1 \prec c_3$.

1.1 Show that if there is a function $u: C \to \mathbb{R}$ such that

$$\mu \preceq \mu'$$
 if and only if $\sum_{i=1}^{n} \mu(c_i)u(c_i) \leq \sum_{i=1}^{n} \mu'(c_i)u(c_i),$ (1)

then \precsim satisfies (EU1)-(EU3).

1.2 Suppose that \preceq satisfies (EU1)-(EU3). Construct u as in class with $u(c_3) = 1$ and $u(c_1) = 0$. Show that (1) holds with the following steps.

- (a) Show that $\alpha \delta_{c_3} + (1-\alpha)\delta_{c_1} \prec \alpha' \delta_{c_3} + (1-\alpha')\delta_{c_1}$ if and only if $\alpha < \alpha'$.
- (b) For any $\mu \in \Delta(C)$, show that

$$\mu \sim [u(c_2)\mu(c_2) + \mu(c_3)]c_3 + [(1 - u(c_2))\mu(c_2) + \mu(c_1)]c_1.$$

(c) Show that the result follows from (a) and (b) and that $\mathbb{E}_{\mu}(u) = u(c_2)\mu(c_2) + \mu(c_3)$.

2. Show that the set of simple lotteries, $\Delta(\mathbb{R}_+)$, is closed under compound lottery, that is, if μ_1 and μ_2 are simple lotteries and $\alpha \in (0, 1)$, then $\alpha \mu_1 + (1 - \alpha)\mu_2$ is well-defined and is itself a simple lottery.

- **3.** Show that if \preceq is a relation over $\Delta(\mathbb{R}_+)$ satisfying (EU1)-(EU3) represented by u, then
 - 1. \precsim satisfies MC iff *u* is strictly increasing;
 - 2. \precsim satisfies (strict) risk aversion iff u is (strictly) concave.

4. Consider the insurance problem presented in class. There are two states of the world: high (h) and low (ℓ) , and the probability of ℓ is μ . Without insurance, consumption at h is w_h and at ℓ is w_ℓ with $w_\ell < w_h$. One unit of insurance pays 1 at ℓ but charges premium p. The agent chooses how much insurance to buy, and, with x units of insurance, consumption levels are

$$c_h = w_h - px$$
 and $c_\ell = w_\ell + (1 - p)x$.

The agent maximizes expected utility with utility function u and is strictly risk averse.

4.1 Suppose that $p = \mu$. Find the optimal x.

4.2 Show that there exists an upper bound $\bar{p} < 1$ on the premium such that for all $p \ge \bar{p}$, optimal x = 0.