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1 Power Analysis

1.1 Revision of Hypothesis Testing

The theme of the first part of this course is the use Power Analysis in Experimental
Economics. There is no doubt that power analysis is now being taken very seriously
by the field journals. For example, in the Editor’s Preface of the very first issue
(July, 2015) of the Journal of the Economic Science Association, the message is
very clear: “A necessary (but not sufficient) condition for publishing a replication
study or null result will be the presentation of power calculations.”1

This section of the course provides a brief review of the central concepts underlying
treatment testing, that are necessary for an understanding of power analysis. For
further detail on these concepts see Siegel & Castellan (1988).

1.1.1 Key concepts and definitions

• A treatment test always has a null hypothesis, labelled H0, and an alternative
hypothesis, labelled H1. The null hypothesis is typically the hypothesis that
there is no effect. The alternative hypothesis is that there is an effect.

• The true size of the effect is referred to as the effect size. For example, if
the value of the parameter of interest is θ0 under the null, and θ1 under the
alternative, then the effect size is θ1 − θ0.

• If the alternative hypothesis specifies the direction of the effect, it is a one-
sided alternative and we conduct a one-tailed test. Otherwise it is a two-sided
alternative and we conduct a two-tailed test. One-sided alternatives are usually
proposed when the researcher has a prior belief about the direction of the effect,
the prior belief perhaps coming from economic theory.

• The first stage of the application of the test is to compute the test statistic
which is a function of the n data values in the sample. n is the sample size.

• The second stage is to compare the test statistic to the null distribution (i.e.
the distribution that the statistic would in theory follow if the null hypothesis
were true). The tails of this distribution form the rejection region of the test,
and if the test statistic falls in this region, the null hypothesis is rejected in
favour of the alternative. If the test statistic falls elsewhere, the null hypothesis
is not rejected, and it may be concluded that the test result is consistent with
the null hypothesis.

• The rejection region is determined by whether the test is two-tailed or one-
tailed, and by the chosen size of the test. The size, usually denoted as α,
is the probability of rejecting the null hypothesis when it is true, and this is
normally set to 0.05. The point at which the rejection region starts is referred
to as the critical value of the test.

• The p-value of the test is the probability of obtaining a test statistic that is at
least as extreme than the one obtained. One reason why the p-value is useful

1https://link.springer.com/article/10.1007/s40881-015-0012-4
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because it allows a conclusion to be drawn without comparing a test statistic
to a critical value (i.e. it avoids the need to consult statistical tables). The
main reason why the p-value is useful is because it is a measure of the strength
of evidence against the null, and in favour of the alternative (i.e. evidence of
an effect). The words used to represent strength of evidence are a matter of
individual taste. Popular terminology is: if p<0.10, there is mild evidence of
an effect; if p<0.05, there is evidence; if p<0.01, there is strong evidence; if
p<0.001, there is overwhelming evidence.

• As mentioned above, a prior belief about the direction of an effect leads to
a one-tailed test. For a one-tailed test (assuming the test statistic has the
expected sign) the p-value is ( half) of the p-value for the corresponding two-
tailed test. Hence one-tailed tests are more likely to find evidence of an effect.
Hence prior beliefs are very useful because they can be used to boost the
chances of obtaining a conclusive result.

• Rejecting the null hypothesis when it is true is known as a type 1 error. As
noted above, the probability of a type 1 error is denoted as α, and is usually
set to 0.05.

• The other type of error is a type 2 error : failing to reject the null hypothesis
when it is false. The probability of a type 2 error is denoted as β.

• The power of a test is the probability of rejecting the null hypothesis when it
is false. The power is denoted as π. Note that π = 1− β.

• The power of a test is determined by a number of factors, including the true
effect size, the sample size (n), and whether the test is one-tailed or two-
tailed. It also depends on the chosen value of α. The higher α is, the higher
the probability of type 1 error, which has the benefit of higher power.

• Power analysis is the name given to the set of techniques used to compute
the power of a given test, and to find the sample size required to meet a given
power requirement.

1.1.2 Choosing the value of α

The second last bullet point above tells us that the choice of α is an important
decision. This choice depends to a large extent on the type of hypothesis under
test. For example, first consider a situation in which the null hypothesis is that a
crime suspect is not-guilty, and the alternative is that the suspect is guilty. In this
situation, a type 1 error is finding an innocent person guilty, while a type 2 error is
letting a guilty person go free. Many people view the first error as more serious than
the second. Hence we should choose a very low value of α in this situation. How
low? This is another question, although please note that α cannot be lowered all the
way to zero, since this would mean that every suspect must be declared not-guilty.

Secondly, consider a situation in which the null hypothesis is that a patient is healthy,
and the alternative is that they are suffering from a contagious disease. In this situ-
ation, declaring a diseased patient healthy (type 2 error) might be considered much
more serious than telling a healthy patient that they have the disease (type 1 error).
Hence, in this situation we could allow a higher value of α, since this would give rise
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to a higher probability of detecting infected patients (i.e. higher power).

In Experimental Economics, we are perhaps fortunate that the errors that might be
made in the interpretation of results from hypothesis tests rarely have consequences
that are very serious. Hence it seems reasonable to follow convention and set the
value of α to 0.05 as a standard.

Although there are no formal standards for power, many researchers assess the power
of their tests using π = 0.80 as a standard for adequacy. The corresponding value
of β is 0.2. These conventions imply a four-to-one ratio between the probability of
type II error and the probability of type I error. So, back to the example of the
suspect in court, the number of guilty suspects set free is four times the number of
innocent suspects imprisoned.

1.2 Treatment Testing

We will demonstrate a number of standard treatment testing techniques in a par-
ticular context: the “Willingness to Pay – Willingness to Accept Gap”, or just the
“WTP – WTA Gap”. This phenomenon has been studied extensively using experi-
mental data. See, for example, Kahneman et al. (1990), Plott & Zeiler (2007) and
Isoni et al. (2011). We will use examples taken directly from Isoni et al. (2011). The
application is particularly useful for the demonstration of treatment tests because
a range of different types of test are required, and can therefore be demonstrated
naturally.

Experiments on the WTP-WTA Gap sometimes require subjects to value physical
objects, and sometimes lotteries. We will consider both of these, commencing with
the former.

1.2.1 One–sample Tests

Before considering treatment tests, we shall consider one–sample tests, since these
are the tests we start with when considering power calculations later.

The experiment of Isoni et al. (2011) has 100 subjects. One of the tasks requires
subjects to value a coffee mug, whose retail value is £3.00.2 An obvious initial
question to address is how close the valuations are to the market price; if valuations
are close to the market price, this indicates that the market price is an accuarate
reflection of individuals’ valuations. To address this question, it is appropriate to
set up a hypothesis test of H0 : µ = 3.00, against H1 : µ 6= 3.00. It is important to
recognise that we are using the sample of 100 valuations to test the hypothesis that
the population mean valuation is equal to 3.00.

The test that is required here is the one-sample t-test. The test statistic is:

2If you read Isoni et al. (2011), you will find that the retail value of the mug is in fact £4.50.
We are pretending that the price is £3.00 in order to make the results of the one-sample test easier
to interpret.
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t =
ȳ − 3.00

s/
√
n

(1)

where ȳ and s are respectively the mean and standard deviation of the sample which
is of size n. Under the null hypothesis, t defined in (5) has a t(n− 1) distribution.
Hence, the rejection rule, given our chosen value of α, is |t| > tn−1,α/2.

Summary statistics for the valuations are obtained as follows:

. summ v_mug

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

v_mug | 100 2.0415 1.571287 0 7.5

Inserting the summary statistics into the the formula for the t-test (1), we obtain
the test statistic:

t =
2.0415− 3.00

1.5713/
√

100
= −6.10 (2)

We then compare this test statistic to the t(99) distribution. Since it is a 2-tailed
test, we use the critical value t99,0.025 = 1.99. We reject H0 in favour of H1 because
| − 6.10| > 1.99. We conclude that we have evidence that the (population) mean
valuation is different from the market price of 3.00.

Note that this test can be performed in STATA using the ttest command:

. ttest v_mug=3.0

One-sample t test

------------------------------------------------------------------------------

Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--------------------------------------------------------------------

v_mug | 100 2.0415 .1571287 1.571287 1.729723 2.353277

------------------------------------------------------------------------------

mean = mean(v_mug) t = -6.1001

Ho: mean = 3.0 degrees of freedom = 99

Ha: mean < 3.0 Ha: mean != 3.0 Ha: mean > 3.0

Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000

Of course this gives the same results. Note that in addition STATA gives three
p-values. The one we are interested in is the one in the centre, which corresponds to
the 2-tailed test. This p-value of 0.0000 tells us that the evidence that the population
mean valuation is different from 3 is overwhelming.

1.2.2 Between-subject (parametric) Treatment Tests

Isoni et al. (2011)’s 100 subjects are randomly allocated between a WTA (51) and
WTP(49) treatments.3 The sample means of WTA and WTP are £2.21 and £1.86
respectively. In investigating the WTP – WTA Gap, the key question to be asked
is whether this difference is statistically significant.

It is useful to start by plotting the two distributions in histograms. This is done in
Figure 1. What is perhaps the most striking feature of these graphs is the difference

3WTP and WTA are elicited using the Becker-DeGroot-Marschak incentive mechanism. See
Becker et al. (1964).
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Figure 1: Frequency histograms of WTP (n=49) and WTA (n=51) for a coffee cup. Data from
Isoni et al. (2011). Vertical line at retail value (£4.50). Normal densities superimposed.

in spead: the spread of values is clearly higher for WTA than for WTP. It is a simple
matter to test the significance of this difference, by using the variance ratio test,
performed in STATA with the sdtest command. The results are as follows:

. sdtest v_mug, by(v_type)

Variance ratio test

------------------------------------------------------------------------------

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--------------------------------------------------------------------

WTP | 49 1.862245 .184379 1.290653 1.491526 2.232964

WTA | 51 2.213725 .2515679 1.796554 1.708436 2.719015

---------+--------------------------------------------------------------------

combined | 100 2.0415 .1571287 1.571287 1.729723 2.353277

------------------------------------------------------------------------------

ratio = sd(WTP) / sd(WTA) f = 0.5161

Ho: ratio = 1 degrees of freedom = 48, 50

Ha: ratio < 1 Ha: ratio != 1 Ha: ratio > 1

Pr(F < f) = 0.0114 2*Pr(F < f) = 0.0229 Pr(F > f) = 0.9886

The test statistic for this test is simply the ratio of the two variances, or equivalently
the square of the ratio of the two standard deviations. To be explicit, the test
statistic, F , has been computed as:

F =
s21
s22

=
1.292

1.792
= 0.52 (3)

This statistic follows an F (48, 50) distribution under the null hypothesis that the two
variances are equal. In this case the test statistic is 0.52. Based on a 2-tailed test, we
see that there is evidence of a difference between the two variances (p-value=0.0229).

We next perform an independent samples t-test of the null hypothesis that the two
means are equal. However, since we have just discovered that the variances differ
between the two samples, it is important to perform the version of the t-test that
allows the variances to be unequal. The formula for the test statistic is:

7
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t =
ȳ1 − ȳ2√
s21
n1

+
s22
n2

(4)

where ȳ1 and ȳ2 are the two sample means, s21 and s22 are the two sample variances,
and n1 and n2 are the numbers of observations in each treatment.

This test is performed in STATA with the ttest command. The unequal option is
required because the variances must be assumed to be unequal. The results are:

. ttest v_mug, by(v_type) unequal

Two-sample t test with unequal variances

------------------------------------------------------------------------------

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--------------------------------------------------------------------

WTP | 49 1.862245 .184379 1.290653 1.491526 2.232964

WTA | 51 2.213725 .2515679 1.796554 1.708436 2.719015

---------+--------------------------------------------------------------------

combined | 100 2.0415 .1571287 1.571287 1.729723 2.353277

---------+--------------------------------------------------------------------

diff | -.3514806 .3119007 -.9710476 .2680864

------------------------------------------------------------------------------

diff = mean(WTP) - mean(WTA) t = -1.1269

Ho: diff = 0 Satterthwaite’s degrees of freedom = 90.8403

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

Pr(T < t) = 0.1314 Pr(|T| > |t|) = 0.2628 Pr(T > t) = 0.8686

Since we have a prior belief that WTP < WTA, we may perform a one-tailed (<)
test. This means that we take the p-value of 0.1314. However, this does not repre-
sent evidence of a difference between the two means. It appears that this particular
experiment does not provide evidence of a WTP −WTA Gap, on the basis of the
parametric t-test.

There are a number of other issues to address. Referring back to Figure 1, we see
that neither of the two distributions appears close to the superimposed normal den-
sities. Non-normality of the data can be confirmed using various statistical tests.
One simple test is the skewness-kurtosis test performed in STATA with the sktest
command. The results are:

. sktest v_mug if v_type==0

Skewness/Kurtosis tests for Normality

------ joint ------

Variable | Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2

-------------+---------------------------------------------------------------

v_mug | 49 0.1143 0.1334 4.74 0.0936

. sktest v_mug if v_type==1

Skewness/Kurtosis tests for Normality

------ joint ------

Variable | Obs Pr(Skewness) Pr(Kurtosis) adj chi2(2) Prob>chi2

-------------+---------------------------------------------------------------

v_mug | 51 0.0133 0.6210 5.97 0.0504

The output actually contains three different test results, in the form of p-values.
Pr(Skewness) is the p-value for the test of the hypothesis that skewness4 equals zero

4Skewness is measured by the third central moment of the distribution. Skewness is zero for
a symmetric distribution. If skewness is positive, it is said that the distribution is “positively
skewed” or “right-skewed”, and the distribution is characterised by a long right-tail. Negative
skewness (or left-skewness) is characterised by a long left-tail.
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(i.e. that the distribution is symmetric). The p-value of 0.0021 implies that symme-
try is strongly rejected by the data. Pr(Kurtosis) is the p-value for the hypothesis
of “normal kurtosis”.5

One clear departure from normality is the skewness in WTA (p-value=0.013). The
two overall tests give us only mild evidence of non-normality.

This is important because the independent samples t-test is based on the assumption
of normality of the two distributions whose means are being compared. The test
may not be valid if the distributions are non-normal. Of course, it is conventional to
appeal to the Central Limit Theorem (CLT) when the samples being compared are
sufficiently large. According to the CLT, the (standardised) mean of a sufficiently
large sample follows a normal distribution even when the sample is drawn from a
sample that is not normal. Here “sufficiently large” is often considered to be 30 and
above. This requirement appears to be met in the present case, so it may be that
we are justified in relying on the t-test result discussed above.

1.2.3 Treatment testing using a regression

Consider the independent samples t-test performed in the last Section, but this time
disregard the complication of unequal variances.

. ttest v_mug, by(v_type)

Two-sample t test with equal variances

------------------------------------------------------------------------------

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--------------------------------------------------------------------

WTP | 49 1.862245 .184379 1.290653 1.491526 2.232964

WTA | 51 2.213725 .2515679 1.796554 1.708436 2.719015

---------+--------------------------------------------------------------------

combined | 100 2.0415 .1571287 1.571287 1.729723 2.353277

---------+--------------------------------------------------------------------

diff | -.3514806 .3139184 -.9744414 .2714802

------------------------------------------------------------------------------

diff = mean(WTP) - mean(WTA) t = -1.1197

Ho: diff = 0 degrees of freedom = 98

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

Pr(T < t) = 0.1328 Pr(|T| > |t|) = 0.2656 Pr(T > t) = 0.8672

An important point is that this t-test can be performed using a linear regression,
with valuation as the dependent variable, and a dummy variable representing the
treatment as the single explanatory variable:

. regress v_mug v_type

Source | SS df MS Number of obs = 100

-------------+---------------------------------- F(1, 98) = 1.25

Model | 3.08722984 1 3.08722984 Prob > F = 0.2656

Residual | 241.338048 98 2.46263314 R-squared = 0.0126

-------------+---------------------------------- Adj R-squared = 0.0026

Total | 244.425278 99 2.4689422 Root MSE = 1.5693

5Kurtosis is a measure of the fourth central moment of a distribution. For a standardised
normal distribution, kurtosis is 3. If kurtosis is larger than 3, the distribution is said to be
leptokurtic (fat-tailed); if less than 3, platykurtic.
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------------------------------------------------------------------------------

v_mug | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

v_type | .3514806 .3139184 1.12 0.266 -.2714802 .9744414

_cons | 1.862245 .2241826 8.31 0.000 1.417362 2.307128

------------------------------------------------------------------------------

Note that the t-statistic associated with the treatment dummy is the same (in mag-
nitude) as the t-statistic obtained using the ttest. It is important to recognise this
equivalence when performing treatment tests in the context of a regression model.

1.2.4 Between-subject (non-parametric) Treatment Tests

Suppose that we have reason to assume that the t-test considered in the last sec-
tion is unreliable. The natural alternative is a non-parametric test. Perhaps the
most popular non-parametric treatment test among Experimental Economists is
the Mann-Whitney test. It is classified as non-parametric because it does not rely
on any strong distributional assumptions (such as normality of the data).

A useful way of viewing the Mann-Whitney test is as a comparison of the medians
of two samples, as distinct from the independent samples t-test which is based on
the comparison of two means.

To implement the Mann-Whitney test, all of the observations from both samples
are ranked by their value, with the highest rank being assigned to the largest value,
and with ranks averaged in the event of a tie. Then the sum of ranks are found for
each sample, and compared. The test is based on this comparison. See Siegel and
Castellan (1988) for further detail.

The test is carried out in STATA using the ranksum command. The result from
applying the test to the WTP −WTA data is:

. ranksum v_mug, by(v_type)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

v_type | obs rank sum expected

-------------+---------------------------------

WTP | 49 2392.5 2474.5

WTA | 51 2657.5 2575.5

-------------+---------------------------------

combined | 100 5050 5050

unadjusted variance 21033.25

adjustment for ties -90.75

----------

adjusted variance 20942.50

Ho: v_mug(v_type==WTP) = v_mug(v_type==WTA)

z = -0.567

Prob > |z| = 0.5710

The p-value of 0.5710 indicates that there is no evidence of a WTP −WTA Gap.
We also see from the p-value that the evidence of a Gap is even weaker than that
from the t-test in tha last section. This is actually an expected result: evidence of
an effect tends to be weaker, the less is assumed about the process generating the
data.
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1.2.5 Tests comparing entire distributions

As suggested by Forsythe et al. (1994), tests comparing entire distributions are use-
ful in situations in which economic theory does not predict the precise nature of the
treatment effect. In the context of the current example, since elementary consumer
theory predicts the equality of WTP and WTA, the same theory is not useful in pre-
dicting the nature of any deviation of WTA from WTP. More precisely, theory does
not predict which functional of the distribution may be expected to shift in response
to the WTP/WTA treatment. Is it (as usually assumed) the mean of the distibution
that shifts? Or is it the median? Or is it the spread of the distribution (and Figure
1 provided evidence that it might well be this)? This problem is solved by applying
tests that are based on a comparison of the entire distributions under the two treat-
ments, rather than a comparison of a particular functional such as mean or variance.

One popular test that compares two entire distributions is the Kolmogorov-Smirnov
(KS) test. In order to understand this test, it is useful to present the two cumu-
lative distribution functions (cdf’s) on the same graph. Such a graph is shown in
Figure 2. The observation that the WTA cdf lies broadly below and to the right
of the WTP cdf is consistent with WTA being higher than WTP. The KS test
statistic is used to judge whether this difference is significant. With reference to
Figure 2, the KS test statistic is seen to be something very simple: it is the maxi-
mum vertical distance between the two cdf’s. This is in fact +0.1309, which is the
vertical distance between the two cdf’s when the value of mug is between 3.0 and 3.4.
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Figure 2: The cdf’s of WTP and WTA.

The KS test is implemented by the command ksmirnov in STATA. Applied to the
WTP-WTA data, the results are as follows:

. ksmirnov v_mug, by(v_type)

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group D P-value
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-----------------------------------

WTP: 0.1309 0.425

WTA: -0.0760 0.749

Combined K-S: 0.1309 0.786

Note: Ties exist in combined dataset;

there are 45 unique values out of 100 observations.

There are three test statistics (D), and accompanying p-values. The first is the
maximum vertical distance of the WTP cdf over the WTA cdf, as already discussed.
The second is the maximum distance of WTA over WTP which is much smaller.
The third is a combined test-statistic which may be used for a 2-sided test. We see
that whichever of the three tests is used, there is no evidence of a difference between
the two distributions, and hence no evidence of a WTP-WTA gap.

Another test for comparing entire distributions that has become quite popular in
Experimental Economics is the Epps-Singleton test (Epps and Singleton, 1986). In
fact, this test does not compare the two distributions directly, but instead compares
the empirical characteristic functions. This test is believed to perform similarly to
the Kolmogorov-Smirnov test in terms of power, and has the added advantage of
being applicable when the outcome has a discrete distribution (e.g. if the outcome
is the number of questions answered correctly in a quiz). The test is implemented
in STATA using the user-written command escftest (Georg 2009).

1.2.6 Within-subject tests

Until now, it has been assumed that the two treatments in a treatment test have
been administered to two samples separately. Such tests are known as between-
subject tests. Within-subject tests are used to test the effect of a treatment in the
contrasting situation in which each subject is observed both before and after the
treatment.

From a theoretical point of view, within-subject tests are preferred to between-
subject tests, for the obvious reason that they have greater statistical power. How-
ever, there are various reasons why within-subject tests are not favoured by experi-
mental economists. The issue of “order effects” is much discussed (see, for example,
Harrison et al. (2005); Holt & Laury (2002). An order effect is present if the result
of the test depends on the order in which two treatments are administered. More
generally, there are concerns that the experience of one treatment impacts on be-
haviour in the treatment that follows.

There are however some instances in experimental economics in which within-subject
tests are the most natural approach. For example, while in a WTP-WTA compar-
ison in the context of a physical object (such as coffee mugs) there are practical
reasons for not exposing both treatments to a single subject, in the context of a
lotteries involving money amounts, this is a natural approach to take.

Isoni et al. (2011) ask their 100 subjects to state their WTA for the lottery
($4, 0.3; $0, 0.7), and then in a later task, ask the same subjects to state their WTP
for the lottery ($5, 0.3; $1, 0.7). Note that these two lotteries are not identical, but
the only difference is that the money amounts in the WTP lottery are exactly £1
more than the corresponding amounts in the WTA lottery. Hence the WTP−WTA
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gap can reasonably be measured by comparing WTA + $1 with WTP . For conve-
nience we will henceforth refer to WTA+ $1 as WTA.

To test formally for a treatment effect, we may, as usual, choose between a para-
metric and a non-parametric test. The parametric test is the paired comparisons
t-test. This test computes the difference between WTA and WTP for each subject,
and then applies the t-test to test whether these differences have mean zero. The
results are:

. ttest WTA=WTP

Paired t test

------------------------------------------------------------------------------

Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--------------------------------------------------------------------

WTA | 100 2.5745 .0961546 .9615459 2.383708 2.765292

WTP | 100 2.2415 .1115095 1.115095 2.020241 2.462759

---------+--------------------------------------------------------------------

diff | 100 .333 .1398705 1.398705 .0554666 .6105334

------------------------------------------------------------------------------

mean(diff) = mean(WTA - WTP) t = 2.3808

Ho: mean(diff) = 0 degrees of freedom = 99

Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0

Pr(T < t) = 0.9904 Pr(|T| > |t|) = 0.0192 Pr(T > t) = 0.0096

We see that there is strong evidence (p-value=0.0096) of WTA being greater than
WTP.

The non-parametric test appropriate in this situation is the Wilcoxon signed ranks
test (see Siegel and Castellan, 1988). As with the parametric test, this test is based
on the differences between WTA and WTP for each observation. The absolute dif-
ferences are ranked from lowest to highest, so that the largest difference gets the
highest value. Then these ranks are summed separately for the positive differences
and the negative differences. If there is no WTP-WTA Gap, these two rank sums
should be roughly equal. The test is therefore based on a comparison of these two
numbers. The test is performed using the signrank command in STATA, as below:

. signrank WTA=WTP

Wilcoxon signed-rank test

sign | obs sum ranks expected

-------------+---------------------------------

positive | 58 3315.5 2492

negative | 31 1668.5 2492

zero | 11 66 66

-------------+---------------------------------

all | 100 5050 5050

unadjusted variance 84587.50

adjustment for ties -22.38

adjustment for zeros -126.50

----------

adjusted variance 84438.63

Ho: WTA = WTP

z = 2.834

Prob > |z| = 0.0046

The rank sum for the positive differences is clearly a higher number, at 3315.5.
The test gives a (two-tailed) p-value of 0.0046 which represents strong evidence of
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a WTP −WTA Gap. The one-tailed p-value is 0.0023, providing strong evidence
that WTA is greater. This p-value is, surprisingly, lower than 0.0096 obtained above
from the corresponding parametric test, indicating that the evidence from the non-
parametric test is stronger.

Actually, the point must be made that the Wilcoxon signed ranks test is not com-
pletely distribution-free. It relies on the assumption that the distribution of paired
differences is symmetric around the median. A test which avoids this assumption
is the paired-sample sign test. This test simply compares the number of positive
differences to the number of negative differences, and asks if this difference is signif-
icantly different from one half according to a binomial distribution. This test may
be viewed as a fully non-parametric test. It too can be peformed in STATA:

. signtest WTA=WTP

Sign test

sign | observed expected

-------------+------------------------

positive | 58 44.5

negative | 31 44.5

zero | 11 11

-------------+------------------------

all | 100 100

One-sided tests:

Ho: median of WTA - WTP = 0 vs.

Ha: median of WTA - WTP > 0

Pr(#positive >= 58) =

Binomial(n = 89, x >= 58, p = 0.5) = 0.0028

Ho: median of WTA - WTP = 0 vs.

Ha: median of WTA - WTP < 0

Pr(#negative >= 31) =

Binomial(n = 89, x >= 31, p = 0.5) = 0.9986

Two-sided test:

Ho: median of WTA - WTP = 0 vs.

Ha: median of WTA - WTP != 0

Pr(#positive >= 58 or #negative >= 58) =

min(1, 2*Binomial(n = 89, x >= 58, p = 0.5)) = 0.0055

The relevant p-value is the first one, 0.0028. Once again there is strong evidence
that WTA is higher than WTP.

1.3 Power Analysis - Theory

Power analysis (Cohen 2013) is used to find the power of a test that has been per-
formed, power being defined as the probability of detecting an effect given that the
effect really exists. It can also be used to find the sample size required to perform
a test with a given power.

1.3.1 Power analysis for one-sample tests

One-sample tests are rarely used in Experimental Economics, but they are simpler
to analyse than the more useful independent-sample tests. This is why we commence
with one-sample tests.
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Suppose that we are interested in the continously distributed outcome measure Y
whose population mean is µ. Suppose further that we are interested in testing the
null hypothesis µ = µ0 against the alternative hypothesis µ = µ1, where µ1 > µ0.

6

We plan to collect a sample of size n for this purpose, and we need to decide what
n should be. Recall that, before we do this, we need to set two quantities. The first
is the test size, α, which is the probability of rejecting the null hypothesis when it
is true (or the probability of type I error). The second is the probability of failing
to reject the null hypothesis when it is false (or the probability of type II error).
This second probability is conventionally labelled β. Note that the probability of
rejecting the null hypothesis when it is false is 1 − β and this is the power of the
test. We shall denote power by π.

As mentioned earlier, it has become standard to set α to 0.05, unless there are
compelling reasons to do otherwise. For power, many researchers use π = 0.80 as a
standard for adequacy.

Having decided on these values of α and β, we proceed to apply power analysis. The
test that will be performed is the one-sample t-test, which is based on the following
test statistic:

t =
ȳ − µ0

s/
√
n

(5)

where ȳ and s are respectively the mean and standard deviation of the sample which
is of size n. Under the null hypothesis, t defined in (5) has a t(n− 1) distribution.
Hence, the rejection rule, given our chosen value of α, is t > tn−1,α.

Based on the anticipation that the value of n eventually chosen will be reasonably
large, the normal approximation may be used and the rejection rule becomes t > zα,
where zα is the upper α critical value of the standard normal. This simplifies the
analysis considerably.

The power of the test is given by:

P (t > zα|µ = µ1) = P

(
ȳ − µ0

s/
√
n
> zα | µ = µ1

)
= P

(
ȳ > µ0 + zα

(
s/
√
n
)
| µ = µ1

)
= P

(
ȳ − µ1

s/
√
n
>
µ0 + zα (s/

√
n)− µ1

s/
√
n

| µ = µ1

)
= Φ

(
µ1 − µ0 − zα (s/

√
n)

s/
√
n

)
(6)

To see the formula (6) at work, suppose that we have a sample of size 30, and we
are testing the null µ = 10 against the alternative µ = 12, and we happen to know
that the standard deviation of the data is 5. As usual, we set α = 0.05 so that
zα = 1.645. Then we apply formula (6) to obtain:

6Alternative hypotheses nearly always involve inequalities, for example, µ > µ0 or µ 6= µ0.
However, in the context of power analysis, it is necessary for both the null and the alternative
hypotheses to be equalities, in order for the problem of finding the desired sample size to be
properly defined. The value under the alternative is assumed to derive either from prior beliefs,
from a previous study, or from a pilot study.
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π = Φ

(
12− 10− 1.645× 5/

√
30

5/
√

30

)
= Φ(0.54584) = 0.71 (7)

With a sample of 30, we see that the power of the test is 0.71. The question that
follows naturally is: what would the sample size need to be for the power to reach
the desired 0.80?

If the desired power of the test is 1− β, we have, from the last line of (6):

µ1 − µ0 − zαs/
√
n

s/
√
n

= zβ (8)

Rearranging (8) we obtain:

n =
s2(zα + zβ)2

(µ1 − µ0)2

Recalling that our chosen values of α and β are 0.05 and 0.20 respectively, we have
zα = 1.645 and zβ = 0.842. Hence we may write the formula for the required sample
size as:

n =
6.185s2

(µ1 − µ0)2
(9)

Once again suppose that we are testing the null µ = 10 against the alternative
µ = 12, and we happen to know that the standard deviation of the data is 5. Then
we apply formula (9) to obtain:

n =
6.185× 52

(12− 10)2
= 38.66 (10)

Clearly n needs to be an integer, and in order to ensure that the power requirement
is met (i.e. that the power is at least 0.8), we should round up rather than down.
The required sample size in this example is therefore 39.

The STATA command power can be used to perform the calculations leading to
both (7) and (10). To obtain the power when the sample size is 30, (7), we use the
following syntax, and obtain the following result:

. power onemean 10 12 , sd(5) n(30) oneside

Estimated power for a one-sample mean test

t test

Ho: m = m0 versus Ha: m > m0

Study parameters:

alpha = 0.0500

N = 30

delta = 0.4000

m0 = 10.0000

ma = 12.0000

sd = 5.0000

Estimated power:

power = 0.6895
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The main arguments are “onemean” which indicates that a one-sample test is re-
quired, and the values under the null and alternative (10 and 12). The options are
as follows: “sd(5)” indicates that the known standard deviation is 5; “oneside” in-
dicates that a one-sided test is required; “n(30)” indicates that the sample size is 30.

Note that the power computed by STATA of 0.6895 is slightly lower than the power
obtained in (7), and this is a consequence of the latter using the normal as an ap-
proximation for the t-distribution. STATA correctly assumes the t-distribution, so
this lower number is, stricty speaking, the correct power.

To obtain the sample size required to achieve a power of 0.80, (10), the required
syntax, and results, are:

. power onemean 10 12 , sd(5) oneside p(0.8)

Performing iteration ...

Estimated sample size for a one-sample mean test

t test

Ho: m = m0 versus Ha: m > m0

Study parameters:

alpha = 0.0500

power = 0.8000

delta = 0.4000

m0 = 10.0000

ma = 12.0000

sd = 5.0000

Estimated sample size:

N = 41

Note that the only change from the previous use of the power command is that the
sample size option n(30) is replaced by the power option p(0.80).

Note that the required sample size is 41, in close agreement with the calculation
performed in (10) (which gave 39). Again, the reason why the result obtained by
STATA is slightly larger than the one obtained above using a hand calculator is
that the latter uses the normal as an approximation for the t-distribution. STATA
correctly assumes the t-distribution and as a result the number appearing in the
numerator of (9) is slightly larger.

A very useful feature of the power command is the graph option. This enables us to
plot power functions.

The following command is used to plot power against sample size for a range of
alternative hypotheses. The result is shown in Figure 3.

power onemean 10 (10.5(0.5)12.5), sd(5) n(20(10)200) oneside graph

The following command is used to plot the sample size required to attain a various
different powers (including 0.80) against the mean under the alternative. The result
is shown in Figure 4.

power onemean 10 (10.5(0.25)12.5), sd(5) p(0.6(0.1)0.9) oneside graph
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Figure 3: Power against sample size under different alternatives

1.3.2 Power analysis for two independent samples

We now consider the slightly more complicated situation that is more usual in ex-
perimental economics, in which there are two samples, a control and a treatment,
and the objective of the study is to discover whether there is a significant difference
in the outcome between the two samples. Again power analysis can be used to de-
termine the sample size that is required to meet this objective.

Let µ1 and µ2 be the population means of the control group and the treatment
group respectively. The null hypothesis of interest is µ2−µ1 = 0 (i.e. the treatment
has no effect), and the alternative is µ2 − µ1 = d (i.e. the treatment has an effect
of magnitude d). d is known as the “effect size” and it is necessary to specify its
value at the outset in order for the problem of finding the required sample size to be
properly defined. The chosen value of d is assumed to be derived either from prior
beliefs, from a previous study, or from a pilot study.

The testing procedure that is required to test the null hypothesis µ2− µ1 = 0 is the
independent samples t-test. If the two sample sizes are n1 and n2, the sample means
are ȳ1 and ȳ2, and the sample standard deviations are s1 and s2, the independent
samples t-test statistic is given by:

t =
ȳ2 − ȳ1

sp
√

1
n1

+ 1
n2

(11)

where sp is the “pooled” sample standard deviation and is given by:

sp =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2
(12)

The reason for using (12) is that we are assuming the two sub-samples have the
same variance. A slightly different formula formula from (11) is required if the two
variances are assumed to be unequal. Under the null hypothesis µ2 − µ1 = 0, the
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distribution of t given in (11) is t(n1 + n2 − 2). Again, matters are simplified using
the normal approximation. We will therefore use the critical value zα.

In this two-sample situation, we clearly need to find two required sample sizes, n1

and n2 say, one for each sample. However, we start by constraining the two sample
sizes to be equal, that is, n1 = n2 = n. The test statistic becomes:

t =
ȳ2 − ȳ1
sp

√
2
n

(13)

The power of the test is given by:

P (t > zα|µ2 − µ1 = d) = P

 ȳ2 − ȳ1
sp

√
2
n

> zα

∣∣∣∣∣µ2 − µ1 = d


= P

(
ȳ2 − ȳ1 > zαsp

√
2

n

∣∣∣∣∣µ2 − µ1 = d

)

= P

 ȳ2 − ȳ1 − d
sp

√
2
n

>
zαsp

√
2
n
− d

sp

√
2
n

∣∣∣∣∣µ2 − µ1 = d


= Φ

d− zαsp
√

2
n

sp

√
2
n


If the desired power of the test is 1− β, we then have:

d− zαsp
√

2
n

sp

√
2
n

= zβ (14)
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Rearranging (14) we obtain:

n =
2s2p(zα + zβ)2

d2

Once again applying our chosen values of α and β, we have zα = 1.645 and zβ =
0.842, and we may write the formula for the required sample size as:

n =
12.370s2p

d2
(15)

For an example of the use of formula (15), suppose that we are testing the effect
size d = 2, and we know that the standard deviations of populations 1 and 2 are 4.0
and 5.84 respectively. Given that the two sample sizes are constrained to be equal,
the pooled standard deviation is 5.0. Then we apply formula (15) to obtain:

n =
12.370× 25

4
= 77.3

Rounding up, we arrive at the required sample size (in each treatment) of 78.

The STATA syntax for the test just performed is:

. power twomeans 10 12 , sd1(4.0) sd2(5.84) oneside p(0.8)

The main arguments are “twomeans” which indicates that a two-sample test is re-
quired, and the values of µ1 and µ2. We could use any values here, provided their
difference is 2 (the effect size). The options are the two standard deviations, and the
request for a one-sided test. The output from this command is shown below. Note
that the required sample size is in close agreement with the calculation performed
above.

. . power twomeans 10 12 , sd1(4.0) sd2(5.84) oneside p(0.8)

Performing iteration ...

Estimated sample sizes for a two-sample means test

Satterthwaite’s t test assuming unequal variances

Ho: m2 = m1 versus Ha: m2 > m1

Study parameters:

alpha = 0.0500

power = 0.8000

delta = 2.0000

m1 = 10.0000

m2 = 12.0000

sd1 = 4.0000

sd2 = 5.8400

Estimated sample sizes:

N = 158

N per group = 79

20



Again the graph option is useful. The following command plots power against sample
size for the test just performed. The result is shown in Figure 5. Note that the
sample size measured on the x-axis of the graph is the total sample size (both
groups). We see that that the total sample size giving a power of 0.8 is around 158,
in agreement with the result of 79 per group obtained from the calculation.

power twomeans 10 12 , sd1(4.0) sd2(5.84) n(20(10)200) oneside graph
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Figure 5: Power against sample size for treatment test

1.3.3 Power analysis for paired tests

In the last sub-section, we considered the problem of applying power analysis in
the situation of an independent-samples t-test. Here, we consider the situation of a
paired sample t-test. That is, if we assume that each subject is observed twice, once
without the treatment, and once with the treatment, how do we find the number of
subjects required to achieve a given power?

The theory used to derive the power formulae is very similar to that of Section 1.3.2,
so there is no need to repeat it here. The syntax for the power command is slightly
different.

Let us use the same example as used in Section 1.3.2: we are testing the effect size
d = 2, and we know that the standard deviations of responses 1 and 2 are 4.0 and
5.84 respectively. The required command, and results, are as follows:

. power pairedmeans 10 12 , sd1(4.0) sd2(5.84) corr(0) oneside

Performing iteration ...

Estimated sample size for a two-sample paired-means test

Paired t test

Ho: d = d0 versus Ha: d > d0

Study parameters:
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alpha = 0.0500 ma1 = 10.0000

power = 0.8000 ma2 = 12.0000

delta = 0.2825 sd1 = 4.0000

d0 = 0.0000 sd2 = 5.8400

da = 2.0000 corr = 0.0000

sd_d = 7.0785

Estimated sample size:

N = 79

We see that the required sample size is 79. Note that this is the same as the number
of subjects required in each group in the independent samples test in Section 1.3.2.
This is intuitive: asking 79 subjects to perform 2 tasks each is, in a sense, of equal
value to asking 158 subjects to perform one task each.

However, note the use of the corr(0) option with the power command. This indi-
cates that the two responses in the paired test are uncorrelated. It is likely that the
two responses are positively correlated: If a subject’s WTA is unusually high, it is
reasonable to expect their WTP to be high as well.

Let us see what happens when we assume a positive correlation between the two
responses:

. power pairedmeans 10 12 , sd1(4.0) sd2(5.84) corr(0.5) oneside

Performing iteration ...

Estimated sample size for a two-sample paired-means test

Paired t test

Ho: d = d0 versus Ha: d > d0

Study parameters:

alpha = 0.0500 ma1 = 10.0000

power = 0.8000 ma2 = 12.0000

delta = 0.3867 sd1 = 4.0000

d0 = 0.0000 sd2 = 5.8400

da = 2.0000 corr = 0.5000

sd_d = 5.1716

Estimated sample size:

N = 43

With a correlation of 0.5 assumed, the required sample size is considerably lower,
at 43.

It is easy to understand why an increase in this correlation causes a reduction in
the required sample size, if we consider an extreme case. Imagine that every subject
has exactly the same treatment effect, so that the correlation between the two re-
sponses is the maximum +1. If we know that all subjects have the same treatment
effect, then obviously we only need to observe one subject in order to find what the
treatment effect is.

In summary, paired tests are desirable because they allow at least a 50% saving in
the number of subjects required for a given power. The saving can be much greater
than 50% in situations in which the paired responses are highly correlated.
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It should be added that a much-discussed disadvantage of paired designs is the pos-
sibility of “order effects”, that is, the behaviour of subjects depending on the order
in which the treatments are experienced. “Crossover designs” are a way of coun-
tering this problem: half of subjects see control followed by treatment; the other
half see treatment followed by control. Differences between these two groups would
confirm the existence of an order effect, which would then need to be controlled for
in treatment tests.

1.4 Power analysis with real examples

1.4.1 Power analysis for the one-sample test on valuation data

In Section 1.2.1, we carried out a one-sample test of the hypothesis that the popu-
lation mean valuation of a mug equals 3.0. Based on the available data, we found
strong evidence that the mean is less than 3.0. Let us now apply power analysis to
this testing problem, using the methods introduced in Section 1.3.1.

The first question is, what is the power of the test performed. Recall that the sample
size is 100, and summary statistics for the 100 valuations are:

. summ v_mug

Variable | Obs Mean Std. Dev. Min Max

-------------+---------------------------------------------------------

v_mug | 100 2.0415 1.571287 0 7.5

The result of the one-sample t-test of H0 : µ = 3.0 is:

. ttest v_mug=3.0

One-sample t test

------------------------------------------------------------------------------

Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--------------------------------------------------------------------

v_mug | 100 2.0415 .1571287 1.571287 1.729723 2.353277

------------------------------------------------------------------------------

mean = mean(v_mug) t = -6.1001

Ho: mean = 3.0 degrees of freedom = 99

Ha: mean < 3.0 Ha: mean != 3.0 Ha: mean > 3.0

Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000

To find the power of this test, we apply the power command as follows:

. power onemean 3.0 2.04,n(100) sd(1.571)

Estimated power for a one-sample mean test

t test

Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500

N = 100

delta = -0.6111

m0 = 3.0000

ma = 2.0400

sd = 1.5710

Estimated power:

power = 1.0000
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We find that the power of this particular test is a very impressive 1.0! This means
that with a sample of 100, and given that the true mean is 2.04 and the true
standard deviation is 1.57, we will always find evidence that the mean is different
from 3.0. This suggests that, if this were the hypothesis of interest, we could get
away with a much smaller sample size. This leads us to the next question: what
sample size would be required to obtain a power of 0.80. This requires a different
power command:

. power onemean 3.0 2.04,p(0.80) sd(1.571)

Performing iteration ...

Estimated sample size for a one-sample mean test

t test

Ho: m = m0 versus Ha: m != m0

Study parameters:

alpha = 0.0500

power = 0.8000

delta = -0.6111

m0 = 3.0000

ma = 2.0400

sd = 1.5710

Estimated sample size:

N = 24

The result is that we would only need a sample of 24 to obtain a test with power
0.80.

1.4.2 Power analysis for the independent samples test on valuation data

To find the power of the independent samples t-test performed earlier on the WTP-
WTA data, we use the power command in STATA, as follows:

. power twomeans 1.86 2.21 , n1(49) n2(51) sd1(1.29) sd2(1.80) oneside

Estimated power for a two-sample means test

Satterthwaite’s t test assuming unequal variances

Ho: m2 = m1 versus Ha: m2 > m1

Study parameters:

alpha = 0.0500

N = 100

N1 = 49

N2 = 51

N2/N1 = 1.0408

delta = 0.3500

m1 = 1.8600

m2 = 2.2100

sd1 = 1.2900

sd2 = 1.8000

Estimated power:

power = 0.2973

The question that is being asked here is: if the true means of the two distributions
were 1.86 and 2.21, and if the true standard deviations also happened to equal the
sample standard deviations, and if we had group samples of size 49 and 51, then
what would be the probability of rejecting the null hypothesis of no difference in
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means, if we used the independent samples t-test? The computed power of 0.2973
seems low.

The other question to be addressed is: what sample sizes would be required to attain
the benchmark power of 0.80? This essentially requires inversion of the formula that
was used to compute power. The power command is used again, but with a different
set of options:

. power twomeans 1.86 2.21 , sd1(1.29) sd2(1.80) oneside power(0.8)

Performing iteration ...

Estimated sample sizes for a two-sample means test

Satterthwaite’s t test assuming unequal variances

Ho: m2 = m1 versus Ha: m2 > m1

Study parameters:

alpha = 0.0500

power = 0.8000

delta = 0.3500

m1 = 1.8600

m2 = 2.2100

sd1 = 1.2900

sd2 = 1.8000

Estimated sample sizes:

N = 498

N per group = 249

We see that the required sample size is 498, with 249 in each group. The principal
reason why this required sample size is so high is that the assumed effect size (that
is, the assumed difference between the two population means) is relatively small.
Detecting a smaller effect size requires a larger sample.

The graph option can again be used. This time we obtain a plot of the required
sample size against power, using the command:

power twomeans 1.86 2.21 , sd1(1.29) sd2(1.80) oneside power(0.1(0.1)0.9) graph

The result is shown in Figure ??.

1.4.3 Power analysis for tests of equality of variance

Another test that was performed in Section 1.2.2 was the equality of variances test,
sdtest. The results were as follows:

. sdtest v_mug, by(v_type)

Variance ratio test

------------------------------------------------------------------------------

Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--------------------------------------------------------------------

WTP | 49 1.862245 .184379 1.290653 1.491526 2.232964

WTA | 51 2.213725 .2515679 1.796554 1.708436 2.719015

---------+--------------------------------------------------------------------

combined | 100 2.0415 .1571287 1.571287 1.729723 2.353277

------------------------------------------------------------------------------

ratio = sd(WTP) / sd(WTA) f = 0.5161

Ho: ratio = 1 degrees of freedom = 48, 50

Ha: ratio < 1 Ha: ratio != 1 Ha: ratio > 1

Pr(F < f) = 0.0114 2*Pr(F < f) = 0.0229 Pr(F > f) = 0.9886
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Figure 6: Required sample size against power

We found a significant difference (p=0.0229 2-tailed) between the variances of WTP
and WTA.

To apply power analysis to this test, we first need the two variances. These are
V (WTP ) = 1.292 = 1.66 and V (WTA) = 1.802 = 3.24. We then apply the power

command as follows:

. power twovariances 1.66 3.24, n1(49) n2(51)

Estimated power for a two-sample variances test

F test

Ho: v2 = v1 versus Ha: v2 != v1

Study parameters:

alpha = 0.0500

N = 100

N1 = 49

N2 = 51

N2/N1 = 1.0408

delta = 1.9518

v1 = 1.6600

v2 = 3.2400

Estimated power:

power = 0.6402

As usual, it seems that we require a larger sample in order to achive the desired
power of 0.8. To find this sample size, we use:

. power twovariances 1.66 3.24, p(0.8)

Performing iteration ...

Estimated sample sizes for a two-sample variances test

F test

Ho: v2 = v1 versus Ha: v2 != v1

Study parameters:

alpha = 0.0500
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power = 0.8000

delta = 1.9518

v1 = 1.6600

v2 = 3.2400

Estimated sample sizes:

N = 146

N per group = 73

It seems that a sample of 73 per group is required for this test.

1.4.4 Power analysis for the paired test on valuation data

In Section 1.2.6 we reported the following results of a paired test comparing WTA
and WTP, for a lottery, for a sample of 100 subjects:

. ttest WTA=WTP

Paired t test

------------------------------------------------------------------------------

Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

---------+--------------------------------------------------------------------

WTA | 100 2.5745 .0961546 .9615459 2.383708 2.765292

WTP | 100 2.2415 .1115095 1.115095 2.020241 2.462759

---------+--------------------------------------------------------------------

diff | 100 .333 .1398705 1.398705 .0554666 .6105334

------------------------------------------------------------------------------

mean(diff) = mean(WTA - WTP) t = 2.3808

Ho: mean(diff) = 0 degrees of freedom = 99

Ha: mean(diff) < 0 Ha: mean(diff) != 0 Ha: mean(diff) > 0

Pr(T < t) = 0.9904 Pr(|T| > |t|) = 0.0192 Pr(T > t) = 0.0096

We saw that there is strong evidence (p-value=0.0096) of WTA being greater than
WTP.

Let us now use the power command to compute the power of the test just performed.

. power pairedmeans 2.57 2.24 , sd1(0.96) sd2(1.11) corr(0) n(100) oneside

Estimated power for a two-sample paired-means test

Paired t test

Ho: d = d0 versus Ha: d < d0

Study parameters:

alpha = 0.0500 ma1 = 2.5700

N = 100 ma2 = 2.2400

delta = -0.2249 sd1 = 0.9600

d0 = 0.0000 sd2 = 1.1100

da = -0.3300 corr = 0.0000

sd_d = 1.4675

Estimated power:

power = 0.7219

The power is 0.72, indicating that the sample size needs to be somewhat greater
than 100 to obtain a power of 0.80. The required sample size is found as follows:

. power pairedmeans 2.57 2.24 , sd1(0.96) sd2(1.11) corr(0) p(0.80) oneside

Performing iteration ...

Estimated sample size for a two-sample paired-means test

Paired t test

Ho: d = d0 versus Ha: d < d0
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Study parameters:

alpha = 0.0500 ma1 = 2.5700

power = 0.8000 ma2 = 2.2400

delta = -0.2249 sd1 = 0.9600

d0 = 0.0000 sd2 = 1.1100

da = -0.3300 corr = 0.0000

sd_d = 1.4675

Estimated sample size:

N = 124

The required sample is 124. However, note that we have used the corr(0) option.
It plausible to expect the correlation between WTP and WTA to be positive. Re-
turning to the data, we find this correlation as follows:

. corr WTA WTP

(obs=100)

| WTA WTP

-------------+------------------

WTA | 1.0000

WTP | 0.0987 1.0000

The correlation is found to be +0.10, and repeating the sample-size calculation
assuming this correlation gives:

. power pairedmeans 2.57 2.24 , sd1(0.96) sd2(1.11) corr(0.10) p(0.80) oneside

Performing iteration ...

Estimated sample size for a two-sample paired-means test

Paired t test

Ho: d = d0 versus Ha: d < d0

Study parameters:

alpha = 0.0500 ma1 = 2.5700

power = 0.8000 ma2 = 2.2400

delta = -0.2369 sd1 = 0.9600

d0 = 0.0000 sd2 = 1.1100

da = -0.3300 corr = 0.1000

sd_d = 1.3930

Estimated sample size:

N = 112

The required sample size is now 112.
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2 Power Analysis using Monte Carlo

2.1 The Monte Carlo Method

If you want to be convinced that a particular test does what it is supposed to do,
or if you want to consider which of a number of tests performs best in a particular
situation, the Monte Carlo Method is very useful.

Note that the STATA power command, demonstrated in previous sections, is very
useful for carrying out power calculations for simple parametric tests, particularly
tests based on the t-distribution. If we require to find the power of a parametric
treatment test in a complex model, or the power of a non-parametric test, the Monte
Carlo method is required.

2.1.1 Finding (actual) size and power of tests using the Monte Carlo
method

In do-file 2, there is an example of the use of the simulate command - the Monte
Carlo command in STATA. In the example, we compare the performance (size and
power) of three tests under different assumptions. The three tests are:

1. The independent samples t-test.

2. The Mann-Whitney test

3. The Kolmogorov-Smirnov test

The simulation is based on the following simple data generating process:

xi = 10 + δdi + εi i = 1, . . . , n

di = 0 if i ≤ n/2

di = 1 if i > n/2

V (εi) = 1 (16)

In (16), di is a dummy variable representing treatment: 1 for treatment; 0 for con-
trol. The first half of the sample is control; the second half is treatment. The
parameter δ is the treatment effect.

The first thing to do is to find the actual size of each test, that is, the proportion
of replications for which the hypothesis δ = 0 is rejected when the true value of δ is
zero. An important requirement of a test is that the actual size is close to the nomi-
nal size (typically 0.05). We then find the power when the treatment effect is δ = 0.5.

Size and power of the three tests are shown in the table below. These numbers are
from a Monte Carlo with 1000 replications, with the assumption of normality of the
error term εi.

SIZE POWER (δ=0.5)
t-test 0.052u 0.702
MW 0.053u 0.683
KS 0.040u 0.513
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A u-superscript in the first column indicates that the proportion of rejections is not
significantly different from 0.05, implying that the test is correctly sized or unbiased
(Feiveson et al. 2002). We see that all three tests are correctly sized, so we may
compare them on the criterion of power.

We see that the independent samples t-test is the most powerful of the three tests,
and the Kolmogorov-Smirnov test is the least powerful.

The power of 0.702 for the t-test is of course something that can be computed using
the power command. Let us check that this gives the same answer:

. power twomeans 10 10.5, sd(1) n(100)

Estimated power for a two-sample means test

t test assuming sd1 = sd2 = sd

Ho: m2 = m1 versus Ha: m2 != m1

Study parameters:

alpha = 0.0500

N = 100

N per group = 50

delta = 0.5000

m1 = 10.0000

m2 = 10.5000

sd = 1.0000

Estimated power:

power = 0.6969

It is straightforward to check that the proportion 0.702 obtained from the Monte
Carlo is not significantly different from the 0.697 obtained from the power command.

The superiority of the t-test may be simply a result of the assumptions underlying
the t-test being met. Let us repeat the process with different assumptions about
the distribution of the error term.

If the error term εi in (16) is assumed to be U(−2, 2), we obtain the size and power
shown in the following table.

SIZE POWER (δ=0.5)
t-test 0.056u 0.566
MW 0.056u 0.526
KS 0.039u 0.306

We see that, again, all three tests are correctly sized, and again the t-test is the
most powerful and the KS test least powerful.

The third distribution we try is a skewed distribution. The error term is a χ2(3)
distribution standardised to have mean zero and variance 1. The results are shown
in the next table.

SIZE POWER (δ=0.5)
t-test 0.061u 0.705
MW 0.067 0.867
KS 0.052u 0.862
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This time, we see that the MW test is excessively sized, so we need to discard it.
The other two tests are correctly sized, and of these two, the KS test is much more
powerful.

The message seems to be that we should worry about using conventional tests when-
ever the distribution of the data is highly asymmetric.
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2.2 Treatment testing with multi-level data

Experimental data rarely consists of independent observations. There is often depen-
dence at different levels. For example, if each subject makes a sequence of decisions,
there is dependence at the level of individual subjects. In interactive experiments,
there is also likely to be dependence at the level of the group of subjects, or at the
level of the session in which the groups of subjects perform their tasks.

Many methods are available for dealing with the complicated structure of an ex-
perimental data set. In this section we attempt to assess how useful some of such
methods are. For example, how serious is it to ignore the clustering in the data,
and just proceed with OLS and OLS standard errors? Which model performs best
under the complicated structure? This sort of question can of course be answered
using the Monte Carlo method.

In do-file 2b, there is a Monte-Carlo program that simulates data from an experiment
with both subject level and group-level clustering. We are once again interested in
tests of a treatment effect. Seven different testing procedures are used. Each is a
t-test from a particular regression model. The seven models are:

1. OLS no clustering

2. OLS with clustering at the subject level

3. OLS with clustering at the group level

4. Random effects, no clustering

5. Random effects, with clustering at the subject level

6. Random effects, with clustering at the group level

7. Multi-level model (subject random effect and group random effect)

We will consider both between-subject and within-subject tests. In this context:
“between-subject” means applying the treatment to half of the subjects; “within-
subject” means applying the treatment to half of the tasks.

The questions we set out to answer with the Monte Carlo are:

1. Which of these testing methods are correctly sized?

2. Of those which are correctly sized, which has highest power?

2.2.1 The multi-level model

First we will explain the structure of the multi-level model. Note that the other
models (ols and random effects) can be seen as special cases of this general model.

The convention adopted here for counting and ordering model levels is similar to
that used by Skrondal & Rabe-Hesketh (2004). A “one-level” model is a straight-
forward linear regression model with a fixed intercept. For example, imagine that
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we have T observations, y1 . . . yT on a single subject. Then the sample consists of
only one cluster, and this is the sense in which there is only one level of clustering.
Next, if we have T observations on each of n subjects, yit, i = 1, . . . , n, t = 1, . . . , T ,
then a “two-level” model is appropriate, with the subject indicator i representing
the second level of clustering. Next, if the n subjects are divided into J groups, a
typical observation is represented by yijt, and a “three-level” model is appropriate,
with the group indicator j representing the third (or “highest”) level of clustering.

The three-level model just described might be specified as follows.

yijt = α + δdi + βxijt + ui + vj + εijt

i = 1 . . . , n j = 1 . . . , J t = 1 . . . , T

V ar(ui) = σ2
u

V ar(vj) = σ2
v

V ar(εit) = σ2
ε (17)

In (17), yijt might be the bid of subject i in group j in round t in an auction or con-
test. The variable xijt might be the private signal received by subject i in round t.
di is a treatment dummy. The treatment might be a “low uncertainty” treatment, in
which there is lower uncertainty over the object of the bidding, and we might expect
bids to be higher in this treatment, that is, we would expect the treatment effect
δ to be positive. ui is the subject-specific random effect, vj is the session-specific
random effect, and εijt is the observation-specific error term.

Notice that if you remove vj from (17), you have the random effects model. If you
remove both vj and ui, you have a linear regression model.

In (17), the treatment dummy (di) has only an i subscript. This implies that the
treatment is being applied between-subject: some subjects are exposed to the treat-
ment throughout the experiment; others are not. Of course, it would be possible
to apply the treatment within-subject, that is, for all subjects to experience the
treatment for (say) half of the tasks. In this case, the treatment variable appearing
in (17) would be dit, that is it would have both i and t subscripts.

The STATA command for multi-level modelling is xtmixed. An example of the use
of the command is:

. xtmixed y d x || j: || i:

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -2959.3982

Iteration 1: log likelihood = -2959.3978

Iteration 2: log likelihood = -2959.3978

Computing standard errors:

Mixed-effects ML regression Number of obs = 2,000

-------------------------------------------------------------

| No. of Observations per Group

Group Variable | Groups Minimum Average Maximum
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----------------+--------------------------------------------

j | 10 200 200.0 200

i | 40 50 50.0 50

-------------------------------------------------------------

Wald chi2(2) = 155.37

Log likelihood = -2959.3978 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

d | .1482739 .0454989 3.26 0.001 .0590978 .23745

x | .0955655 .0079035 12.09 0.000 .0800749 .111056

_cons | -.1241784 .247917 -0.50 0.616 -.6100867 .3617299

------------------------------------------------------------------------------

------------------------------------------------------------------------------

Random-effects Parameters | Estimate Std. Err. [95% Conf. Interval]

-----------------------------+------------------------------------------------

j: Identity |

sd(_cons) | .4820359 .292011 .1470391 1.580251

-----------------------------+------------------------------------------------

i: Identity |

sd(_cons) | 1.193918 .156372 .9236118 1.543333

-----------------------------+------------------------------------------------

sd(Residual) | 1.017198 .0162466 .9858481 1.049544

------------------------------------------------------------------------------

LR test vs. linear model: chi2(2) = 1737.24 Prob > chi2 = 0.0000

Note: LR test is conservative and provided only for reference.

2.2.2 Results from the Monte Carlo study

We assume n = 40 subjects and T = 50 rounds. We also assume that subjects are
divided into groups of 4.

We use 100 replications in the Monte Carlo.

The following table shows the results for the between-subject treatment tests (in
which half of the subjects are exposed to the treatment). The treatment effect un-
der the alternative hypothesis is δ = 0.5.

SIZE POWER (δ=0.5)
ols no clustering 0.46 0.68
OLS with clustering at the subject level 0.15 0.41
OLS with clustering at the group level 0.07u 0.25
Random effects no clustering 0.13 0.41
Random effects with clustering at the subject level 0.15 0.41
Random effects with clustering at the group level 0.07u 0.25
Multi-level model 0.08u 0.27

We see that only three of the seven testing procedures result in tests that are cor-
rectly sized. Some are seriously over-sized. Most spectacularly, the test under ols
without clustering is 0.46. This means that when clustering is completely ignored, a
significant treatment effect is found nearly half of the time, even though the true ef-
fect of the treatment is zero. Hence the importance of dealing with clustering is clear.

Interestingly, the clustering models that result in unbiased tests are the ones that
deal with clustering at the group level. Dealing with clustering at the lower level of
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the individual appears to be inadequate.

When deciding which of the testing procedures is best, we restrict attention to the
three unbiased procedures, and then look at power. We see that of the three, the
multi-level model gives the highest power of 0.27 (although the difference in power
between the three is not great). On this basis, we may conclude that the multi-level
model is the best framework in which to conduct the between-subject treatment test.

Next, let us turn to the within-subject tests (in which all subjects experience the
treatment in half of the rounds. Since within-subject tests can detect smaller treat-
ment effects, we shall assume a much smaller treatment effect of δ = 0.05 under the
alternative hypothesis. The results are as follows.

SIZE POWER (δ=0.05)
ols no clustering 0.02u 0.07
OLS with clustering at the subject level 0.09u 0.31
OLS with clustering at the group level 0.09u 0.33
Random effects no clustering 0.05u 0.31
Random effects with clustering at the subject level 0.09u 0.31
Random effects with clustering at the group level 0.08u 0.33
Multi-level model 0.05u 0.31

We see very different results from the between-subject tests. All seven tests appear
to be unbiased (although if we used a larger number of replications in the Monte-
Carlo, we are likely to find that some are incorrectly sized). The testing procedure
that ignores clustering has very low power. The other six have modest power, and
there is very little difference between them.

2.2.3 Summary of results

The key results of this section are: in the between-subject context, only three of
the seven tests are correctly sized: the two that use group-level clustering, and the
multi-level model; of these three tests, the most powerful is the one performed in
the framework of the multi-level modelling. Failure to deal with clustering has very
serious consequences in terms of massively excessive test size.

Recommendations that follow from these results are: in the between-subject con-
text, the multi-level model is the best model in which to conduct treatment tests; if
clustering is to be used, it is preferable to cluster at the highest possible level (e.g.
group rather than subject).

In the within-subject context, the results are very different. Firstly, within-subject
tests are able to detect much smaller treatments than within-subject tests. All of
the approaches perform well on both size and power, except ols without clustering.
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2.3 Varying n and T

Since in the last section the multi-level model was established as the best framework
in which to conduct a treatment test, in this section we shall restrict attention to
this model, and investigate the effect of varying n and T on power.

Clearly an increase in n and an increase in T can both be expected to increase the
power of the treatment test. But which of the two is more beneficial? Should one
be increased at the expense of the other? We shall attempt to answer these questions.

2.3.1 The effect of increasing n and T on power in the multi-level model

do-file 2c contains the code for the Monte Carlo.

The following table shows the results for the between-subject tests, with a treat-
ment effect of δ = 0.5. The numbers shown in the table are powers for different
combinations of n and T .

T = 50 T = 100 T = 150
n = 40 0.24 0.26 0.28
n = 80 0.25 0.34 0.35
n = 120 0.39 0.38 0.35

We see that increases in n and T do tend to bring about increases in power, but
these increases to not appear to be very steep. In fact, if we go on increasing both
n and T , power seems to level off at a “power ceiling” of around 0.40.

The following table shows the results for the within-subject tests, with a smaller
treatment effect of δ = 0.05.

T = 50 T = 100 T = 150
n = 40 0.20 0.47 0.75
n = 80 0.44 0.71 0.91
n = 120 0.67 0.81 0.97

Again we see results that are very different in the within-subject setting. Aside from
the ability of the within-sample test to detect the much smaller treatment effect,
it seems that increases in n and T both bring about steep increases in the power
of the test. At the highest values of n and T considered, power is almost 1. No-
tice also that increases in T appear to be slightly more beneficial than increases in n.
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3 Estimation of risk aversion parameters using

risky choice data

3.1 Modelling choices between lotteries (the “house money
effect”)

In this sub-section, we consider a very popular application of binary data models:
risky choice experiments. We will use the models to test a particular hypothesis re-
lating to behaviour in this context. The hypothesis of interest is the “house money
effect”, that is, the phenomenon of choices becoming more risk-seeking when the
initial endowment is higher (see Thaler & Johnson 1990, Keasey & Moon 1996).

Consider the choice problem presented in Figure 7, where the two circles represent
lotteries, and the areas within them represent probabilities of the stated outcomes
(the same lottery choice example was used to demonstrate the use of non-parametric
tests in Part 1. The left-hand lottery is the “safe” lottery and it pays $5 with cer-
tainty. The right-hand lottery is the “risky lottery” and represents a 50:50 gamble
involving the outcomes $0 and $10.

Figure 7: A lottery choice problem

Clearly, by choosing between the lotteries in Figure 7, a subject is conveying some
information about his or her attitude to risk. What is of interest here is whether
previously endowing a subject with an amount of money has an effect on this choice.
Let us define the “house money effect” as the phenomenon of agents becoming less
risk averse (i.e. more likely to choose the risky lottery) when their initial endowment
(i.e. “house money”) increases.

Suppose we have a sample of 1,050 subjects. We endow each subject (i) with a
different wealth level (wi); we then immediately ask them to choose between the
two lotteries shown in Figure 7. We then define the binary variable y to take the
value 1 if the safe lottery is chosen, and 0 if risky is chosen. The results of this
(imaginary) experiment are contained in the file house money sim. Here is some
summary information about the data:

. table w, contents(n y mean y)

----------------------------------

w | N(y) mean(y)
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----------+-----------------------

0 | 50 .92

.5 | 50 .88

1 | 50 .88

1.5 | 50 .84

2 | 50 .84

2.5 | 50 .9

3 | 50 .84

3.5 | 50 .72

4 | 50 .78

4.5 | 50 .7

5 | 50 .7

5.5 | 50 .74

6 | 50 .72

6.5 | 50 .72

7 | 50 .5

7.5 | 50 .64

8 | 50 .5

8.5 | 50 .48

9 | 50 .56

9.5 | 50 .5

10 | 50 .5

----------------------------------

The final column of the table shows the mean of the binary variable for different
wealth levels. Since the mean of a binary variable is the proportion of ones in the
sample, the numbers in this column represent the proportion choosing the safe lot-
tery at each wealth level. The tendency for this proportion to fall as wealth rises is
consistent with the house money effect.

Next we set out to confirm this using a parametric model. A natural model to start
with is the probit model, defined as follows:

P (yi = 1|wi) = Φ (β0 + β1wi) (18)

where Φ(.) is the standard normal c.d.f.7 The likelihood function for the probit
model is:

L =
n∏
i=1

[Φ (β0 + β1wi)]
yi [1− Φ (β0 + β1wi)]

1−yi (19)

and the log-likelihood is:

LogL =
n∑
i=1

[yiln (Φ (β0 + β1wi)) + (1− yi) ln (1− Φ (β0 + β1wi))] (20)

An important property of the cdf (18) defining the probit model is symmetry. By
this, we mean that Φ(−z) = 1 − Φ(z). This property also applies to the distri-
bution underlying the logit model (see Exercise 1). This feature of the underlying
distribution is useful because it allows the log-likelihood function to be written more
compactly as follows. If we recode the binary variable as:

yyi = 1 if S is chosen
yyi = −1 if R is chosen

7If a random variable Z has a standard normal distrubution, its density function is φ(z) =
1√
2π

exp
(
−z2
2

)
, and its cumulative distribution function (c.d.f.) is Φ(z) = P (Z < z) =

∫ z
−∞ φ(z)dz.
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then the log-likelihood (20) can be written as:

LogL =
n∑
i=1

ln (Φ (yyi × (β0 + β1wi))) (21)

We maximise LogL defined in (21) to give MLE’s of the two parameters β0 and β1.
This task is performed using the probit command in STATA, as follows:

. probit y w

Iteration 0: log likelihood = -634.4833

Iteration 1: log likelihood = -584.91375

Iteration 2: log likelihood = -584.5851

Iteration 3: log likelihood = -584.58503

Iteration 4: log likelihood = -584.58503

Probit regression Number of obs = 1050

LR chi2(1) = 99.80

Prob > chi2 = 0.0000

Log likelihood = -584.58503 Pseudo R2 = 0.0786

------------------------------------------------------------------------------

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

w | -.1409882 .0145377 -9.70 0.000 -.1694816 -.1124948

_cons | 1.301654 .0911155 14.29 0.000 1.123071 1.480237

------------------------------------------------------------------------------

The first thing we might do when we have obtained the results is to test for the pres-
ence of the house money effect. This test is done for us. The asymptotic t-statistic
associated with wealth is z = −9.70, and the associated p-value is 0.000. This tells
us that there is strong evidence that wealth has a negative effect on the probability
of choosing the safe lottery. In other words, there is strong evidence of the house
money effect in this data.

There is a STATA command test that can be used immediately after estimation of
a model. Using this for the test just performed, we obtain:

. test w=0

( 1) [y]w = 0

chi2( 1) = 94.05

Prob > chi2 = 0.0000

This is a Wald test of the house money effect. The Wald test statistic is the square
of the asymptotic t-test statistic [94.05 = (−9.70)2], and has a χ2(1) distribution
under the null hypothesis of no effect. The Wald test is equivalent to the asymp-
totic t-test and the two tests will always have the same p-value.

The next thing we might wish to do is to predict the probability of making the
safe choice at each wealth level. The best way of presenting this is using a graph of
predicted probability against w. The formula we need to graph is Φ(1.302−0.141w).
The graph can be obtained using the following two STATA commands:

margins, at(w=(0(1)15))

marginsplot, ylabel(0(0.1)1) yline(0.5)

The result is shown in Figure 8. We see that when the initial endowment is 0,
there is a high probability that the safe alternative will be chosen, that is, subjects
appear to be highly risk averse. We also see that as the initial endowment rises, the
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probability of choosing the safe alternative falls fairly steeply. Since a probability
of 0.5 is associated with risk-neutrality, and, remembering that Φ−1(0.5) = 0, it
appears that, in order to induce risk-neutrality in subjects, it is necessary to endow
them with an amount 1.3016/0.1410 = $9.23. When the initial endowment is above
this amount, risk-seeking behaviour is predicted, since the predicted probability of
the safe choice is then lower than 0.5.
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Figure 8: Predicted probabilities of safe choice against wealth level from the probit model.

3.1.1 Marginal effects

Something else that is sometimes useful after estimating a probit model is to obtain
conditional marginal effects. This is the predicted change in the probability resulting
from a small change in the explanatory variable starting from a particular value. For
example, if we wish to know how much the probability of S changes when w rises
from 0, we use:

. margins, dydx(w) at(w=0)

Conditional marginal effects Number of obs = 1050

Model VCE : OIM

Expression : Pr(y), predict()

dy/dx w.r.t. : w

at : w = 0

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

w | -.024109 .0013299 -18.13 0.000 -.0267155 -.0215026

------------------------------------------------------------------------------

We see that the conditional marginal effect is −0.024, implying that, roughly speak-
ing, if w rises from 0 to 1, the probability of S will fall by 2.4 percentage points. If
we condition on a higher value of w, we obtain a different result:

. margins, dydx(w) at(w=10)

Conditional marginal effects Number of obs = 1050
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Model VCE : OIM

Expression : Pr(y), predict()

dy/dx w.r.t. : w

at : w = 10

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

w | -.0559177 .0053804 -10.39 0.000 -.0664631 -.0453724

------------------------------------------------------------------------------

This higher (in magnitude) marginal effect (−0.056) simply reflects the fact that
the curve shown in Figure 8 is steeper at w=10 than at w=0. Finally, if we use the
margins command without the at( ) option, we obtain the average marginal effect.

. margins, dydx(w)

Average marginal effects Number of obs = 1050

Model VCE : OIM

Expression : Pr(y), predict()

dy/dx w.r.t. : w

------------------------------------------------------------------------------

| Delta-method

| dy/dx Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

w | -.0444259 .0039929 -11.13 0.000 -.0522518 -.0366

------------------------------------------------------------------------------

The average marginal effect is seen to be −0.044. This is simply the average of the
marginal effects over all of the observations in the sample.

3.1.2 Wald tests and LR tests

The test used in Section 3.1 for the significance of the variable w was a Wald test.
It was demonstrated that this test can be conducted using the test command, and
the Wald test statistic is the square of the asymptotic t-test statistic.
There is yet another way of testing the same hypothesis: the likelihood ratio (LR)
test. This test is based on a comparison of the maximised log-likelihood in two
different models. The test statistic is computed using:

LR = 2(LogLU − LogLR) (22)

where LogLU is the maximised log-likelihood from the unrestricted model, and
LogLR is the same for the restricted model. In the present case, the unrestricted
model is the model that has been estimated (probit model with w), while the re-
stricted model is a probit model with w removed, that is, a model with an intercept
only. Estimation of this restricted model gives:

. probit y

Iteration 0: log likelihood = -634.4833

Iteration 1: log likelihood = -634.4833

Probit regression Number of obs = 1050

LR chi2(0) = 0.00

Prob > chi2 = .

Log likelihood = -634.4833 Pseudo R2 = 0.0000

------------------------------------------------------------------------------

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_cons | .5464424 .0408516 13.38 0.000 .4663746 .6265101

------------------------------------------------------------------------------
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We see that the restricted log-likelihood is −634.48. This is used to compute the
LR test statistic using (22):

LR = 2(LogLU − LogLR) = 2(−584.59− (−634.48)) = 99.8 (23)

Under the null hypothesis of no house money effect, the statistic given by (23) comes
from a χ2(1) distribution. Therefore we reject the null because 99.8 > χ2

1,0.05 = 3.84.
In fact, there is a way of computing the LR test statistic directly in STATA. The
estimates from the two models are stored, and then the lrtest command is applied.
The required sequence of commands, and the results, are as follows:

probit y w

est store with_w

probit y

est store without_w

lrtest with_w without_w

Likelihood-ratio test LR chi2(1) = 99.80

(Assumption: without_w nested in with_w) Prob > chi2 = 0.0000

Reassuringly the result is exactly the same as (23). An advantage of using STATA
to perform the test is that a p-value is provided in addition to the test statistic. In
this case the p-value (0.0000) conveys overwhelming evidence of the house money
effect.

Finally, note that the LR test statistic (99.80) is fairly close to the Wald test statistic
(94.05) for the same hypothesis. This similarity is not surprising since the two tests
are asymptotically equaivalent.

3.2 Analysis of ultimatum game data

The file ug sim contains (simulated) data from 200 subjects who participated in an
ultimatum game, in which the size of the pie is 100 units. Each subject plays twice,
once as proposer, and once as responder, with a different opponent each time. The
variables are:

i: proposer ID;
j: responder ID;
male i: 1 if proposer is male; 0 otherwise;
male j: 1 if responder is male; 0 otherwise;
y: proposer’s offer;
d: responder’s decision: 1 if accept; 0 if reject.

In Section ??, we analysed the proposers’ offers in this data set, and we tested for
a gender effect. In this section, we will turn to the responder’s decision. This is a
binary decision, so binary data models are required to identify its determinants.

We first consider simply how many of the subjects rejected offers. For this we obtain
a tabulation of the binary variable, from which we see that 51 of the 200 subjects
(approximately one-quarter of them) rejected offers.
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Figure 9: Responder’s decision (d) against proposer’s offer (y), with smoother

. tab d

d | Freq. Percent Cum.

------------+-----------------------------------

0 | 51 25.50 25.50

1 | 149 74.50 100.00

------------+-----------------------------------

Total | 200 100.00

The main determinant of the responder’s decision is the proposer’s offer (y). Some-
times it is useful to plot binary data. The command lowess d y produces the graph
shown in Figure 9. Lowess (locally weighted scatter-plot smoother) is a form of
non-parametric regression that is used elsewhere in the course. Roughly speaking,
it shows the mean value of d conditional on different values of y. Since the mean of
d is closely related to the probability of the offer being accepted, the graph is telling
us that the probability of acceptance rises sharply as the offer rises, approaching 1
as the offer approaches 50.

In complete contrast to “Lowess”, the probit model introduced in Section 3.1 is an
example of a fully parametric estimation procedure. The probit model is defined as
follows:

P (d = 1|y) = Φ (β0 + β1y) (24)

where Φ(.) is the standard normal cdf. The results are as follows:

. probit d y

Iteration 0: log likelihood = -113.55237

Iteration 1: log likelihood = -70.230335

Iteration 2: log likelihood = -66.806698

Iteration 3: log likelihood = -66.738058

Iteration 4: log likelihood = -66.738049

Iteration 5: log likelihood = -66.738049

Probit regression Number of obs = 200

LR chi2(1) = 93.63

Prob > chi2 = 0.0000

Log likelihood = -66.738049 Pseudo R2 = 0.4123

------------------------------------------------------------------------------

d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

y | .1439157 .0212804 6.76 0.000 .1022069 .1856244
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_cons | -3.855266 .631443 -6.11 0.000 -5.092872 -2.617661

------------------------------------------------------------------------------

From the results, we can deduce a formula for the predicted probability of an offer
(y) being accepted:

P̂ (d = 1|y) = Φ (−3.855 + 0.144y) (25)

In this situation, it is useful to consider the equation underlying the probit model:

d∗ = β0 + β1y + ε (26)

ε ∼ N (0, 1)

In (26), d∗ is the propensity of the responder to accept the offer. If this propensity
is greater than zero, the offer is accepted:

d = 1⇔ d∗ > 0⇔ β0 + β1y + ε > 0⇔ ε > −β0 − β1y (27)

Hence the probability of the offer being accepted is:

P (d = 1) = P (ε > −β0 − β1y) = Φ (β0 + β1y) (28)

which is the probability formula (24) on which the probit model is based. The reason
why (26) is useful is because it enables us to compute the “minimum acceptable offer
(MAO)” for a typical subject. Disregarding the error term, we have:

d∗ = β0 + β1y (29)

A typical subject is indifferent between accepting and rejecting an offer when (29)
is zero:

β0 + β1y = 0⇒ y = −β0
β1

(30)

We compute this from the estimates as follows:

yMAO = −−3.855

0.144
= 26.79 (31)

The MAO (31) can also be computed in STATA with the nlcom command:

. nlcom MAO: -_b[_cons]/_b[y]

MAO: -_b[_cons]/_b[y]

------------------------------------------------------------------------------

d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

MAO | 26.78837 .9268278 28.90 0.000 24.97182 28.60492

------------------------------------------------------------------------------

The nlcom procedure uses a technique known as the “delta method” which is consid-
ered in more detail in Section 3.5. The major benefit from applying this technique is
that it returns a standard error and confidence interval for MAO, in addition to the
point estimate. The point estimate of 26.79 is telling us that a “typical” responder
(typical in the sense of having an error term ε equal to the mean value of 0) would
say “no” to the offer of 26, but “yes” to 27.
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3.2.1 The strategy method

The strategy method has been used in the context of the ultimatum game by Sol-
nick (2001), among others. The proposer makes an offer as before. Let this offer be
y. Meanwhile, in a different room, the responder is asked to state their minimum
acceptable offer (yMAO). Then y is compared to yMAO. If y ≥ yMAO, the offer is
taken as being accepted, and both players receive their pay-offs. If y < yMAO, the
offer is taken as being rejected, and both players receive zero.

Under this approach, the responder is not only being asked for a decision, but for
their strategy. Note that it is in their interest to state their MAO truthfully; for this
reason, the strategy method is said to be incentive compatible.

The standard version of the ultimatum game (i.e. as described in Section ??) is
known as the “direct decision apprach”. The strategy method has a considerable
advantage over the direct decision approach. The data is much more informative.
Clearly, it is more useful to know the responder’s minimum acceptable offer than it
is simply to know whether they have accepted a particular offer. This is particularly
so in the cases where proposers offer 50% of their endowment. When a proposer
offers 50%, the offer is almost certain to be accepted, and very little is learned,
despite a significant cost to the experimenter. The strategy method enables useful
information to be learned from all responders.

Let us imagine that the strategy method has been applied to the 200 subjects instead
of the “direct decision approach”, and that the data set consists of:

i: proposer ID;
j: responder ID;
male i: 1 if proposer is male; 0 otherwise;
male j: 1 if responder is male; 0 otherwise;
y: proposer’s offer;
MAO: responder’s minimum acceptable offer;
d: outcome: 1 if y ≥ yMAO; 0 if y < yMAO.

A (simulated) data set containing these variables is contained in the file ug sm sim.
With this data, we carry out the following simple analysis:

. ci means MAO

Variable | Obs Mean Std. Err. [95% Conf. Interval]

-------------+---------------------------------------------------------------

MAO | 200 31.375 .6666664 30.06036 32.68964

. tab d

d | Freq. Percent Cum.

------------+-----------------------------------

0 | 87 43.50 43.50

1 | 113 56.50 100.00

------------+-----------------------------------

Total | 200 100.00

The straightforward command ci MAO has been used to obtain a 95% confidence
interval for the population mean of yMAO. This confidence interval is clearly nar-
rower than the one obtained in Section 3.2.1 from the direct-decision data (24.97182
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→ 28.60492). This simply confirms that we are able to estimate parameters more
precisely when the strategy method has been used.

However, note also that the MAO appears to be around five units higher when the
strategy method is being used. This has the consequence that the number of “re-
jections” is higher (87, compared with 51 under the direct-decision approach). This
is a common finding. Eckel & Grossman (2001) explain the higher rejection rate
under the strategy method in terms of subjects’ failure to understand the simultane-
ous nature of the decision and their attempt to signal a “tough” bargaining position.

There may also be a perception on the part of the responder that their statement
of MAO is hypothetical (even though it is not, since it determines their pay-off).
Asking a subject about how they would act in different situations is sometimes re-
ferred to as a “cold” treatment, to be contrasted with the “hot” treatment that
arises when an offer is actually placed in front of the responder, and all they need
to do is “accept”.

The message here is perhaps that superior data should be obtained using the strat-
egy method, but that an adjustment should be applied to the MAO data in order
for it to be applicable to the “direct decision” situation. On the evidence above, the
stated values of MAO would need to be reduced by around five units.

3.3 The ml Routine in STATA

There is another way to estimate the probit model. This is to specify the log-
likelihood function ourselves, and ask STATA to maximise it. We shall return to
the house money sim data set used in Section 3.1.

The following code defines a program called myprobit which computes the log-
likelihood. It then reads the data and calls on the ml program to perform the
maximisation of the log-likelihood. The formula being programmed is the one given
in (21) above:

LogL =
n∑
i=1

ln (Φ (yyi × (β0 + β1wi))) (32)

* LOG-LIKELIHOOD EVALUATION PROGRAM "myprobit" STARTS HERE:

program define myprobit

* SPECIFY NAME OF QUANTITY WHOSE SUM WE WISH TO MAXIMISE (logl)

* AND ALSO PARAMETER NAMES (EMBODIED IN xb)

* PROVIDE LIST OF TEMPORARY VARIABLES (p ONLY)

args logl xb

tempvar p

* GENERATE PROBABILITY OF CHOICE MADE BY EACH SUBJECT (p):

quietly gen double ‘p’=normal(yy*‘xb’)

* TAKE NATURAL LOG OF p AND STORE THIS AS logl

quietly replace ‘logl’=ln(‘p’)

* END "myprobit" PROGRAM:
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end

* READ DATA

use "house money_sim", clear

* GENERATE (INTEGER) yy FROM y:

gen int yy=2*y-1

* SPECIFY LIKELIHOOD EVALUATOR (lf), EVALUATION PROGRAM (myprobit),

* AND EXPLANATORY VARIABLE LIST.

* RUN MAXIMUM LIKELIHOOD PROCEDURE

ml model lf myprobit ( = w)

ml maximize

The line args logl xb is important. It indicates that the quantity that we wish
to maximise is the sum over the sample of the variable named logl, and that the
parameters with respect to which we wish to maximise it are implicit in the variable
xb, which corresponds to β0 + β1w in the formula. logl and xb are examples of
“local variables”, being variables which exist within the program but not outside it.
Any other local variables need to be declared by the tempvar command. Whenever
temporary variables are referred to within the program, they need to be placed
inside a particular set of quotation marks:

‘p’

The quote before the p is the left single quote; you will find it in the upper left
corner of most keyboards, below the “escape” key. The quote after the p is the right
single quote; you will find it somewhere near the “enter” key.

Variables appearing without quotes are “global” variables, meaning that they also
exist outside the program. In this example, yy (the binary dependent variable) is a
global variable.

The last two lines of the above code are the lines that cause the program to run.
The ml command specifies that the lf likelihood evaluator will be used. lf stands
for “linear form”, which essentially means that the likelihood evaluation program
returns one log-likelihood contribution for each row of the data set. A situation in
which the linear form restriction is not met is in the context of a panel data model,
for which the likelihood evaluation program will return one contribution for each
block of rows. In such a situation the d-family evaluators are required in place of
lf. These will be introduced later.

The results from running the above code are:

. ml model lf myprobit ( = w)

. ml maximize

initial: log likelihood = -727.80454

alternative: log likelihood = -635.1321

rescale: log likelihood = -635.1321

Iteration 0: log likelihood = -635.1321

Iteration 1: log likelihood = -584.84039

Iteration 2: log likelihood = -584.58503

Iteration 3: log likelihood = -584.58503

Number of obs = 1050
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Wald chi2(1) = 94.05

Log likelihood = -584.58503 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

w | -.1409882 .0145377 -9.70 0.000 -.1694816 -.1124948

_cons | 1.301654 .0911155 14.29 0.000 1.123071 1.480237

------------------------------------------------------------------------------

Note that the results are identical to the results obtained using the command probit

y w presented in Section 3.1.

See Exercise 1 for more practice with the ml routine.

3.4 Structural Modelling

In the present context, a structural model is one that is expressed in terms of the
individual’s utility function. The models analysed in earlier sections were not struc-
tural; they simply attempted to explain the data. Here, and in the next section, we
consider the estimation of some simple structural models.

Firstly, let us assume that all individuals have the same utility function, which is:

U (x) =
x1−r

1− r
r 6= 1 (33)

= ln (x) r = 1

Equation (33) is known as the constant relative risk aversion (CRRA) utility func-
tion, because the parameter r is the coefficient of relative risk aversion: the higher
is r, the more risk averse the subject. Note that r can be negative, indicating risk-
seeking.

Secondly, let us assume that individuals maximise expected utility. We shall con-
tinue to use the “house money effect” example introduced in Section 3.1. The
expected utilities from choosing the safe and risky choices are:

EU (S) =
(w + 5)1−r

1− r
(34)

EU (R) = 0.5
(w)1−r

1− r
+ 0.5

(w + 10)1−r

1− r
(35)

Thirdly, let us assume that when an individual computes the expected utility dif-
ference, they make a computational error ε, where ε ∼ N(0, σ2). This type of error
has come to be known in risk modelling as a Fechner error term after Fechner (1860).

Given these three assumptions, the safe choice is made if:

EU (S)− EU (R) + ε > 0

where EU(S) and EU(R) are defined in (34) and (35) respectively.
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The probability of the safe choice being made is therefore:

P (S) = P [EU (S)− EU (R) + ε > 0]

= P [ε > EU (R)− EU (S)]

= P

[
ε

σ
>
EU (R)− EU (S)

σ

]
= 1− Φ

[
EU (R)− EU (S)

σ

]
= Φ

[
EU (S)− EU (R)

σ

]
(36)

Substituting (34) and (35) into (36), and using the “yy trick” introduced in Section
3.1, the log-likelihood function may be written:

LogL =
n∑
i=1

lnΦ

yyi × (wi+5)1−r

1−r −
(

0.5 (wi)
1−r

1−r + 0.5 (wi+10)1−r

1−r

)
σ

 (37)

We maximise (37) to obtain estimates of the two parameters r and σ. The challenge
is that there is no STATA command that does this for us. We need to program it
and use the ml command.

The required program, and the commands required to run the program, are as fol-
lows. For infomation about the syntax, the reader should refer back to the example
provided in Section 3.3 in which each step was explained.

program drop structural

program structural

args logl r sig

tempvar eus eur diff p

quietly gen double ‘eus’=(w+5)^(1-‘r’)/(1-‘r’)

quietly gen double ‘eur’=0.5*w^(1-‘r’)/(1-‘r’)+0.5*(w+10)^(1-‘r’)/(1-‘r’)

quietly gen double ‘diff’=(‘eus’-‘eur’)/‘sig’

quietly gen double ‘p’=normal(yy*‘diff’)

quietly replace ‘logl’=ln(‘p’)

end

ml model lf structural /r /sig

ml maximize

The line args logl r sig is again important. Here, it indicates that the quantity
we are seeking to maximise is named logl, and that the parameters with respect
to which we wish to maximise it are r and sig. One difference from the code in
Section 3.3 is that the two parameters (r and sig) are named in the ml command.
This is appropriate because these two parameters are stand-alone parameters, unlike
those in the example in Section 3.3 which were regression parameters. Providing
parameter names in the ml command is useful because it causes the same names to
be included in the results table.

The results are as follows:

. ml model lf structural /r /sig
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. ml maximize

initial: log likelihood = -<inf> (could not be evaluated)

feasible: log likelihood = -601.45646

rescale: log likelihood = -601.45646

rescale eq: log likelihood = -600.78259

Iteration 0: log likelihood = -600.78259

Iteration 1: log likelihood = -595.2424

Iteration 2: log likelihood = -595.22797

Iteration 3: log likelihood = -595.22739

Iteration 4: log likelihood = -595.22739

Number of obs = 1050

Wald chi2(0) = .

Log likelihood = -595.22739 Prob > chi2 = .

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

r |

_cons | .21765 .0976928 2.23 0.026 .0261757 .4091244

-------------+----------------------------------------------------------------

sig |

_cons | .3585733 .1046733 3.43 0.001 .1534174 .5637292

------------------------------------------------------------------------------

We see that the following estimates are obtained for the two parameters:

r̂ = 0.2177

σ̂ = 0.3586

So, on the basis of the assumptions of this model, it appears that every individual
is operating with the same utility function:

U (x) =
x1−0.2177

1− 0.2177
=
x0.7823

0.7823

and also that, when individuals compute the difference between the expected utili-
ties of the two lotteries, they make a random computational error with mean zero
and standard deviation 0.3586.

3.5 Further Structural Modelling

3.6 The heterogeneous agent model

We continue to assume that subjects have the CRRA utility function:

U (x) =
x1−r

1− r
r 6= 1

In Section 3.4, we assumed that all individuals had the same risk attitude, i.e. all
had the same value of r. We attributed variation in choices to errors in the compu-
tation of expected utilities.

Here, we shall adopt a different approach. We shall assume (more realistically) that
each subject has his or her own value of r, and we shall refer to the model as the
“heterogeneous agent model”. We just need to make an assumption about how r
varies over the population. An obvious choice is:

r ∼ N
(
µ, σ2

)
(38)
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We ask each subject to make a choice between two lotteries, S and R. We shall use
the popular Holt & Laury (2002) design, which is presented in Table 1.

Problem Safe(S) Risky(R) r∗

1 (0.1, $2.00; 0.9, $1.60) (0.1, $3.85; 0.9, $0.10) −1.72
2 (0.2, $2.00; 0.8, $1.60) (0.2, $3.85; 0.8, $0.10) −0.95
3 (0.3, $2.00; 0.7, $1.60) (0.3, $3.85; 0.7, $0.10) −0.49
4 (0.4, $2.00; 0.6, $1.60) (0.4, $3.85; 0.6, $0.10) −0.15
5 (0.5, $2.00; 0.5, $1.60) (0.5, $3.85; 0.5, $0.10) 0.15
6 (0.6, $2.00; 0.4, $1.60) (0.6, $3.85; 0.4, $0.10) 0.41
7 (0.7, $2.00; 0.3, $1.60) (0.7, $3.85; 0.3, $0.10) 0.68
8 (0.8, $2.00; 0.2, $1.60) (0.8, $3.85; 0.2, $0.10) 0.97
9 (0.9, $2.00; 0.1, $1.60) (0.9, $3.85; 0.1, $0.10) 1.37
10 (1.0, $2.00; 0.0, $1.60) (1.0, $3.85; 0.0, $0.10) ∞

Table 1: The Holt and Laury design, with threshold risk aversion parameter for each
choice problem

In Table 1, there are ten problems listed in order. In Problem 1, we expect all
subjects to choose S; in Problem 10, we expect all subjects to choose R (in fact,
R stochastically dominates in Problem 10). What is interesting is where in the se-
quence a subject switches from S to R, since this will indicate their attitude to risk.
The content of Table 1 is sometimes called a “multiple price list” (MPL).

In the fourth column of Table 1, a value r∗ is shown. This is known as the “threshold
risk attitude” for the problem. It is the risk attitude (i.e. the coefficient of relative
risk aversion) that would (assuming EU) make a subject indifferent between S and
R for the choice problem. It can be worked out using Excel (see the spreadsheet:
risk aversion calculations) as shown below.

As an example, if a subject chooses S on problems 1–6, and chooses R on problems
7–10, they are revealing that (assuming EU) their risk attitude (r) is somewhere
between 0.41 and 0.68.

Here, we assume that each subject is only asked to solve one of the ten problems.
Each problem is solved by ten subjects, so we have 100 subjects in total. The data

51

dominated by



is contained in the file holtlaury sim.

Assume that subject i is presented with a choice problem with threshold risk level
r∗i . Let yi = 1 if S is chosen, and yi = 0 if R is chosen. The probability of subject i
choosing S is (using the normal distribution of r specified in (38)):

P (yi = 1) = P (ri > r∗i ) = P

(
z >

r∗i − µ
σ

)
= P

(
z <

µ− r∗i
σ

)
= Φ

(
µ− r∗i
σ

)
= Φ

(
µ

σ
−
(

1

σ

)
r∗i

)
i = 1, . . . , n (39)

In (39) we again have a probit model with dependent variable y. The explanatory
variable is the threshold risk attitude for the problem being solved, r∗.

The intercept is µ
σ

and the slope is − 1
σ
. Therefore from the probit estimates we are

able to deduce estimates of µ and σ. This is done in STATA using the delta method
(see next sub-section).

The output from the probit model is as follows:

. probit y rstar

Iteration 0: log likelihood = -68.994376

Iteration 1: log likelihood = -32.754689

Iteration 2: log likelihood = -31.899974

Iteration 3: log likelihood = -31.896643

Iteration 4: log likelihood = -31.896643

Probit regression Number of obs = 100

LR chi2(1) = 74.20

Prob > chi2 = 0.0000

Log likelihood = -31.896643 Pseudo R2 = 0.5377

------------------------------------------------------------------------------

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

rstar | -1.826082 .3481266 -5.25 0.000 -2.508398 -1.143767

_cons | .7306556 .2264169 3.23 0.001 .2868867 1.174424

------------------------------------------------------------------------------

Note: 10 failures and 0 successes completely determined.

.

. nlcom (mu: -_b[_cons]/_b[rstar]) (sig: -1/_b[rstar])

mu: -_b[_cons]/_b[rstar]

sig: -1/_b[rstar]

------------------------------------------------------------------------------

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

mu | .400122 .0978294 4.09 0.000 .2083799 .5918641

sig | .5476205 .104399 5.25 0.000 .3430021 .7522389

------------------------------------------------------------------------------

Note that we have estimates of µ and σ. But this time, as we have estimated a
heterogeneous agent model, the interpretation is as follows: every individual has a
different “coefficient of relative risk aversion”, drawn from the following distribution:

r ∼ N
(
0.4001, 0.54762

)
Having drawn their risk aversion parameter, they use this in the expected utility
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calculation, which they perform without error.

3.7 The delta method

The delta method (nlcom in STATA) is used to obtain standard errors of the esti-
mates of µ and σ in (39).

Let the probit estimates be β̂ and α̂. We might refer to these estimates as the
reduced form estimates. Using STATA, we can obtain an estimate of the variance
matrix of these estimates:

V̂

(
β̂
α̂

)
=


var

(
β̂
)

cov
(
α̂, β̂

)
cov
(
α̂, β̂

)
var (α̂)

 (40)

The square roots of the diagonal elements of this matrix are the standard errors
that we see in the STATA output from the probit command.

If you wanted to see V̂ having estimated the probit model, you would do it as follows,
and this is what you would see:

. mat V=e(V)

. mat list V

symmetric V[2,2]

y: y:

rstar _cons

y:rstar .12119211

y:_cons -.04842685 .05126459

The parameters that we are interested in are functions of α and β.

α =
µ

σ
; β = − 1

σ
⇒ µ = −α

β
; σ = − 1

β
(41)

We would refer to µ and σ as the structural parameters, being parameters of the
utility function underlying behaviour.

We require the matrix D, where:

D =

 ∂µ
∂β

∂µ
∂α

∂σ
∂β

∂σ
∂α

 =

 α
β2 − 1

β

1
β2 0

 (42)

Let D̂ be the matrix D with parameters replaced by MLE’s. The variance matrix
of µ̂ and σ̂ is:

V̂

(
µ̂
σ̂

)
= D̂

[
V̂

(
β̂
α̂

)]
D̂
′

(43)

The required standard errors are the square roots of the diagonal elements of this
matrix.
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Note that the delta method is applied using the nlcom command in STATA. This
command will be used again. The example presented at the end of Section 3.6 makes
clear the required syntax of the command.

3.8 Other Data Types

3.9 Interval data: the interval regression model

Let us return to the Holt & Laury (2002) design (Table 1). We continue to assume
that subjects have the CRRA utility function:

U (x) =
x1−r

1− r
r 6= 1

Recall that in the fourth column of Table 1, we show the value of r (the coefficient of
relative risk aversion) that would make a subject indifferent between the two lotter-
ies. Recall also that in Problem 1 we expect all subjects to choose S; in Problem 10,
we expect all subjects to choose R. In Section 3.6, we considered ways of estimating
the distribution of r over the population, when the available data consists of choices
between pairs of lotteries.

In this section, we assume that the available information is more precise. We ask
each subject to solve each choice problem in order, starting with Problem 1, thus
revealing where in the list they switch from S to R. Under the assumption of EU,
knowledge of where a subject switches gives us an interval for r for that subject.
For example, an EU-maximising subject switching between Problems 5 and 6 is re-
vealing that their coefficient of relative risk aversion is between 0.15 and 0.41.

The sort of data that results is known as “interval data”. We are interested in the
appropriate method for estimating the distribution of r over the population when
interval data is available.

The file interval data sim contains this information for 100 subjects (as well as
information on subject characteristics).

As in Section 3.4, we assume that the distribution of r over the population is:

r ∼ N
(
µ, σ2

)
(44)

For each subject, i, we have a lower bound (li) and an upper bound (ui) for his or
her r-value. The likelihood contribution for each subject is the probability of them
being in the interval in which they are observed. So:

Li = P (li < r < ui) = P (r < ui)− P (r < li) = Φ

(
ui − µ
σ

)
− Φ

(
li − µ
σ

)
(45)

So the sample log-likelihood is:

LogL =
n∑
i=1

[
Φ

(
ui − µ
σ

)
− Φ

(
li − µ
σ

)]
(46)
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Equation (46) is maximised to give MLEs of µ and σ.
This is called the interval regression model (although at present there are no ex-
planatory variables). To estimate it in STATA, use the command:

intreg rlower rupper

where rlower and rupper are the variables containing the lower and upper bounds
for each observation.
The results are as follows:

. intreg rlower rupper

Fitting constant-only model:

Iteration 0: log likelihood = -199.07231

Iteration 1: log likelihood = -198.96851

Iteration 2: log likelihood = -198.96849

Fitting full model:

Iteration 0: log likelihood = -198.96849

Iteration 1: log likelihood = -198.96849

Interval regression Number of obs = 100

LR chi2(0) = 0.00

Log likelihood = -198.96849 Prob > chi2 = .

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

_cons | .613146 .0597808 10.26 0.000 .4959777 .7303143

-------------+----------------------------------------------------------------

/lnsigma | -.5323404 .0764651 -6.96 0.000 -.6822092 -.3824716

-------------+----------------------------------------------------------------

sigma | .587229 .0449025 .505499 .6821733

------------------------------------------------------------------------------

Observation summary: 0 left-censored observations

0 uncensored observations

6 right-censored observations

94 interval observations

Estimates of the parameters of interest can be read directly. The distribution of
risk-attitude over the population is estimated to be:

r ∼ N
(
0.613, 0.5872

)
Next, suppose that we wish to allow risk attitude to vary according to subject
characteristics. For example:

ri = β0 + β1agei + β2malei + εi (47)

= x′iβ + εi

εi ∼ N
(
0, σ2

)
In the second line of (47) we are adopting the convention of collecting all explanatory
variables pertaining to observation i, including a constant, into the vector xi. The
vector β contains the three corresponding parameters β = (β0 β1 β2)

′.
With this generalisation, (44) becomes:

ri ∼ N
(
x′iβ, σ

2
)

(48)
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and the log-likelihood function becomes:

LogL =
n∑
i=1

ln

[
Φ

(
ui − x′iβ

σ

)
− Φ

(
li − x′iβ

σ

)]
(49)

To estimate an interval regression model with explanatory variables, we do as follows:

. intreg rlower rupper age male

Fitting constant-only model:

Iteration 0: log likelihood = -199.07231

Iteration 1: log likelihood = -198.96851

Iteration 2: log likelihood = -198.96849

Fitting full model:

Iteration 0: log likelihood = -197.24143

Iteration 1: log likelihood = -197.17109

Iteration 2: log likelihood = -197.17108

Interval regression Number of obs = 100

LR chi2(2) = 3.59

Log likelihood = -197.17108 Prob > chi2 = 0.1657

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

age | .02213 .0196956 1.12 0.261 -.0164727 .0607327

male | -.2165679 .1341118 -1.61 0.106 -.4794222 .0462864

_cons | .1592841 .4565128 0.35 0.727 -.7354646 1.054033

-------------+----------------------------------------------------------------

/lnsigma | -.5507208 .0764747 -7.20 0.000 -.7006085 -.4008332

-------------+----------------------------------------------------------------

sigma | .5765341 .0440903 .4962832 .6697618

------------------------------------------------------------------------------

Observation summary: 0 left-censored observations

0 uncensored observations

6 right-censored observations

94 interval observations

From these results, we now have an equation which determines the risk-aversion
parameter for an individual of a given age and gender:

r̂i = 0.159 + 0.022agei − 0.217malei

However, note that neither of these explanatory variables appear to have signifi-
cant effects on risk attitude. “Male” is close to being significant, and the negative
sign would tell us that males are less risk-averse (or more risk-seeking) than females.

3.10 Continuous (exact) data

Yet another way of eliciting risk attitude is to present a subject with a single lottery,
and ask them for their “certainty equivalent”, that is, the amount of money such
that they would be exactly indifferent between receiving this sum of money and
playing the lottery.

For example, if the lottery is:

(0.3, $3.85; 0.7, $0.10)
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and the subject claims that their certainty equivalent is $0.75, then we can deduce
that their coefficient of relative risk aversion is exactly 0.41. How do we know this?
Because:8

0.3
3.851−0.41

1− 0.41
+ 0.7

0.101−0.41

1− 0.41
=

0.751−0.41

1− 0.41

A very important question is: how do you elicit a subject’s certainty equivalent?
You can simply ask them, and hope that they give an honest answer. But, accord-
ing to some, there needs to be an incentive for the subject to report their certainty
equivalent correctly. The scheme used to elicit the certainty equivalent needs to be
incentive compatible.

One popular method for doing this, which is under reasonable assumptions incentive
compatible, is the Becker-DeGroot-Marschak (BDM; Becker et al. 1964) incentive
mechanism. BDM is described as follows. The individual is asked to place a valua-
tion on a lottery (i.e. to report their certainty equivalent). They are told that after
they have done this a random “price” will be generated. If the randomly generated
price is higher than their reported valuation, they will be given an amount of money
equal to this price, and they will not play the lottery; if the price is lower than their
valuation, they will play the lottery.

In the file exact data sim, we have the values of r elicited in this way for 100
subjects. This is “exact” data in the sense that the value of r is exactly observed.
It is also “continuous” data as opposed to “discrete” (binary and interval data are
both forms of “discrete” data). The distribution of r over the sample of 100 subjects
is shown in Figure 10.
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Figure 10: The distribution of r over 100 subjects

We return to the assumption:
r ∼ N

(
µ, σ2

)
(50)

How do we estimate µ and σ when exact data is available? First, let us consider

8This may be verfied easily using the Excel sheet “risk aversion calculations”.
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what happens when we try to do this using maximum likelihood.

Consider the density associated with a particular observation ri:

f (ri;µ, σ) =
1

σ
√

2π
exp

(
−(ri − µ)2

2σ2

)
=

1

σ
φ

(
ri − µ
σ

)
(51)

Equation (51) is a typical likelihood contribution, so the sample log-likelihood func-
tion is given by:

LogL =
n∑
i=1

ln

[
1

σ
φ

(
ri − µ
σ

)]
(52)

To program (52), we would do as follows:

program define exact

args lnf xb sig

tempvar y p

quietly gen double ‘y’=$ML_y1

quietly gen double ‘p’=(1/‘sig’)*normalden((‘y’-‘xb’)/‘sig’)

quietly replace ‘lnf’=ln(‘p’)

end

ml model lf exact (r= ) ()

ml maximize

The results are as follows:

. ml maximize

initial: log likelihood = -<inf> (could not be evaluated)

feasible: log likelihood = -60.251905

rescale: log likelihood = -7.5739988

rescale eq: log likelihood = 3.1167494

Iteration 0: log likelihood = 3.1167494

Iteration 1: log likelihood = 3.2682025

Iteration 2: log likelihood = 3.6372157

Iteration 3: log likelihood = 3.637384

Iteration 4: log likelihood = 3.637384

Number of obs = 100

Wald chi2(0) = .

Log likelihood = 3.637384 Prob > chi2 = .

------------------------------------------------------------------------------

r | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

eq1 |

_cons | .1340463 .0233327 5.74 0.000 .0883149 .1797776

-------------+----------------------------------------------------------------

eq2 |

_cons | .2333275 .0164987 14.14 0.000 .2009905 .2656644

------------------------------------------------------------------------------

and we see that the maximum likelihood estimates are:

µ̂ = 0.134

σ̂ = 0.233

Of course, there is a much easier way of obtaining the MLEs of µ and σ when exact
data is available:

58



. summ r

Variable | Obs Mean Std. Dev. Min Max

-------------+--------------------------------------------------------

r | 100 .1340463 .2345029 -.4884877 .6499107

The maximum likelihood estimates of µ and σ are just the sample mean and sample
standard deviation respectively, of the variable r. The slight difference between the
MLE of σ and the sample standard deviation arises because the former uses n as
the divisor, while the latter uses n− 1. Asymptotically, the two will be equal.

Note that the main purpose of using ML above is to remind ourselves of the struc-
ture of the log-likelihood function in a situation in which the data are continuous.
This is particularly important in the next sub-section, in which we consider censored
data, which usually takes the form of a mixture of discrete and continuous data.

What is interesting about the results is that the estimate of µ (0.134) is much closer
to zero than the estimates obtained using all other methods so far (which have varied
between 0.400 and 0.613). This suggests that, while we know that most subjects are
risk averse when choosing between lotteries, they tend towards risk neutrality when
asked for certainty equivalents (when r=0, we would have risk neutrality). Another
way of saying this is that when a subject is asked for a certainty equivalent, there
is a tendency for them to compute the expected value of the lottery, and to report
something close to this.

The tendency towards risk-neutrality in valuation problems is an obvious explana-
tion for the well-known “preference reversal” phenomenon discussed in Section ??.
This is the tendency for subjects to prefer the safer lottery (the “P-bet”) when asked
to choose between them, but to place a higher valuation on the riskier lottery (the
“$-bet”).

3.11 Further Analysis of Ultimatum Game Data

3.11.1 Tests of gender effects

We will return to the data on the ultimatum game, ug sim.

It is possible to use treatment tests to test for the effect of gender. Just treat gender
as the “treatment”. However, a more informative way of looking for a gender effect
is using regression analysis. The important advantage of regression analysis is that
it enables us to estimate different effects at the same time.

For example, we might wish to do the following. We start by generating a dummy
variable indicating whether a male proposer is giving to a female responder.

. gen m_to_f=male_i*(1-male_j)

.

. regress y male_i male_j m_to_f

Source | SS df MS Number of obs = 200

-------------+------------------------------ F( 3, 196) = 3.37

Model | 976.185392 3 325.395131 Prob > F = 0.0195

Residual | 18901.4946 196 96.436197 R-squared = 0.0491

-------------+------------------------------ Adj R-squared = 0.0346
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Total | 19877.68 199 99.8878392 Root MSE = 9.8202

------------------------------------------------------------------------------

y | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

male_i | -4.519608 1.885099 -2.40 0.017 -8.23729 -.8019261

male_j | 3.744608 2.074081 1.81 0.073 -.3457722 7.834988

m_to_f | 2.381863 2.80275 0.85 0.396 -3.145557 7.909282

_cons | 35.275 1.552709 22.72 0.000 32.21284 38.33716

------------------------------------------------------------------------------

These results tell us that:

1. Male proposers tend to offer 4.5 units less than female proposers, ceteris
paribus.

2. Proposers tend to offer 3.7 units more when the responder is male, than when
the responder is female, ceteris paribus. Note that this effect is only marginally
significant.

3. Male proposers tend to offer 2.38 units more when the responder is female than
when the responder is male, ceteris paribus. Eckel & Grossman (2001) refer
to this effect as the“chivalry effect”. Note that the effect is not statistically
significant in this sample.

In consideration of conclusion 2, that proposers offer more when the responder is
male, we might ask whether it is rational to do so. It is rational to offer more to
male responders if males are more likely to reject offers. To see if this is the case,
we go back to the probit model of Section 3.2, and add gender of responder as an
explanatory variable in addition to proposer’s offer. The results from doing so are:

. probit d y male_j

Iteration 0: log likelihood = -113.55237

Iteration 1: log likelihood = -68.373743

Iteration 2: log likelihood = -64.187937

Iteration 3: log likelihood = -64.116934

Iteration 4: log likelihood = -64.116904

Iteration 5: log likelihood = -64.116904

Probit regression Number of obs = 200

LR chi2(2) = 98.87

Prob > chi2 = 0.0000

Log likelihood = -64.116904 Pseudo R2 = 0.4354

------------------------------------------------------------------------------

d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

y | .1567836 .0231961 6.76 0.000 .11132 .2022472

male_j | -.5976406 .2668131 -2.24 0.025 -1.120585 -.0746966

_cons | -3.933341 .6589175 -5.97 0.000 -5.224796 -2.641886

------------------------------------------------------------------------------

We see that there is indeed evidence (p = 0.025) that a male is less likely to accept
an offer of a given size than a female. So we may conclude that it is rational for the
proposer to offer more to male responders.

The obvious follow-up question is: how much more should a proposer offer to a
male responder than to a female responder, in order to create the same propensity
for the offer to be accepted? We see that male responders’ propensity to accept
is lower by 0.598. This difference may be restored by increasing the offer by an
amount 0.598/0.157. This computation may of course be carried out using the
nlcom command:
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. nlcom more_to_male: -_b[male_j]/_b[y]

more_to_male: -_b[male_j]/_b[y]

------------------------------------------------------------------------------

d | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

more_to_male | 3.811882 1.612015 2.36 0.018 .6523915 6.971373

------------------------------------------------------------------------------

We see that a rational proposer should offer 3.81 more to a male than to a female,
although the 95% confidence interval for this quantity is fairly wide.

It is interesting that this estimate of 3.81 for the additional amount that a rational
proposer should give to a male in order to restore the acceptance probability, is very
close to the estimate of 3.74 obtained from the above regress command, of the addi-
tional amount that proposers actually do offer to males. It appears that proposers
in this (simulated) data are indeed rational.

3.11.2 The proposer’s decision as a risky choice problem

Let us remind ourselves of the relationship between the proposer’s offer (y) and the
responder’s decision on whether to accept the offer (d). In Figure 9 we demonstrated
that the probability of acceptance rises steeply with the amount of the offer, appar-
ently reaching one when the offer reaches 50% of the endowment (recall that the
total endowment was 100 tokens).

So, we could view the proposer’s decision like this. If the proposer offers 50, he will
keep 50 for himself with probability one; he will have a risk-free pay-off of 50. If
he offers only 40, his pay-off will rise to 60, but he will receive this with probability
less than 1, and otherwise he will receive zero. The lower the offer, the higher the
possible pay-off, but the lower the probability of receiving this pay-off. Hence we
see that the proposer’s decision can be analysed as a risky choice problem. This is
the approach taken by Roth et al. (1991), and others.

In Section 3.2, the probit model was used to obtain the following formula for the
probability of any offer y being accepted:

P̂ (d = 1) = Φ (−3.855 + 0.144y)

Let us assume that the proposer knows this probability formula. Note that this
amounts to the assumption of rational expectations.

For the present purpose, let us treat the total endowment as one unit. So, if the
proposer offers 50% of the endowment, their risk-free pay-off will be 0.5. If they
offer 40%, their uncertain payoff will be 0.6, and so on.

The Excel sheet proposer decision contains the calculations necessary for the
following analysis. If we assume a particular risk aversion parameter, say r = 0.4,
then we have an expression for the proposer’s expected utility from offering y:

EU (y) = Φ (−3.855 + 0.144y)×
(

100− y
100

)1−0.4/
(1− 0.4) (53)
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Using (53), we can plot EU against each possible offer. This is done in Figure 11,
from which we can see that the optimal offer for a proposer with r = 0.4 is 40. By
repeating this exercise for different values of r, we can find the optimal offer for each
risk attitude. The result is plotted in Figure 12.

Figure 11: EU against offer with r=0.4

Figure 12: Optimal offer against r

We can then use Figure 12 to deduce a proposer’s risk-aversion parameter from
knowledge of their offer. For example, if they offer 47, their risk-aversion parameter
must be 0.95 (they are quite risk averse).

Recall that 36 (18%) of the 200 proposers offered exactly 50% of their endowment.
Should we attribute this behaviour to extreme risk aversion? Perhaps not. Individ-
uals who offer 50% are likely to be doing so out of fairness considerations. They
want to give 50% because they think it is the fair allocation, not because they are
worried about having an offer rejected.

This sort of consideration leads us to a mixture model. Mixture models will be
introduced in Part V. One group from the population (around 18% it seems) are
motivated by fairness and wish to share the endowment equally. The other 82% are
motivated by self-interest and their degree of risk aversion dictates how much they
offer, in accordance with the analysis above.

Extending this idea, it is interesting to take a close look at the subjects who are
motivated by fairness (let us label them “egalitarians”; they are sometimes also re-
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ferred to as “equal-splitters”).

. gen egal=y==50

. tab egal

egal | Freq. Percent Cum.

------------+-----------------------------------

0 | 164 82.00 82.00

1 | 36 18.00 100.00

------------+-----------------------------------

Total | 200 100.00

As remarked above, 36 proposers offer 50%. Let us now investigate how these 36
divide by gender. To investigate whether egalitarianism is related to gender, we
require a chi-squared test (see Part I).

. tab male_i egal , chi2

| egal

male_i | 0 1 | Total

-----------+----------------------+----------

0 | 66 25 | 91

1 | 98 11 | 109

-----------+----------------------+----------

Total | 164 36 | 200

Pearson chi2(1) = 10.1506 Pr = 0.001

As we see in the table, 25 of the 91 females are egalitarian, while only 11 of the 109
males are so. The significance of this difference is summarised with the chi-squared
test, and the accompanying p-value indicates a strongly significant relationship be-
tween gender and egalitarianism: females are significantly more likely than males to
be egalitarian (according to this simulated data set).

4 Social Preference Models

4.1 Introduction

Here, we are concerned with the estimation of the parameters of the utility function
underlying dictator game giving. That is, we focus on the structure of the prefer-
ences underlying behaviour. In this context, it has become conventional to assume
that utility is an increasing function of two arguments: own payoff (x1) and other’s
payoff (x2).

In order to estimate the parameters of such a utility function, it is obviously essen-
tial for the experimental design to include variation in the endowment. However,
it is also desirable for the prices of the two “goods” to vary. That is, the price of
“giving” and the price of “keeping” should be varied in order to allow estimation of
parameters representing, for example, the degree of substitutability or complemen-
tarity between these two “goods”.
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4.2 Estimation of Preference Parameters from Dictator Game
Data

4.2.1 The framework

The experimental setting considered here is that of Andreoni & Miller (2002). In
this setting, each individual is given an endowment (m) which they are required to
allocate between “self” and “other”, with both of these “goods” having a “price”.
For example, if “giving to self” has price 1

2
, the amount actually received by “self”

will be twice the amount allocated; if “giving to other” has price 1
3
, the amount

actually received by “other” will be three times the amount allocated.

We define the following variables:

x1 = amount received by self
x2 = amount received by other
m = endowment
p1 = “price” of x1 (i.e. for each unit of the endowment that you direct to yourself,
you receive 1/p1 units).
p2 = “price” of x2 (i.e. for each unit of the endowment that you direct to the other
player, they receive 1/p2 units).

An important point to stress at this stage is that, although x1 and x2 will be the
two arguments of the dictator’s utility function, they are not decision variables. The
decision variables are, in fact:

p1x1 = amount directed to self
p2x2 = amount directed to other

Of course, these two decision variables are not both free variables. They are con-
strained by the budget constraint:

p1x1 + p2x2 ≤ m (54)

We will normally refer to the amount directed to other, p2x2 as the single decision
variable, and recognise that, because the budget constraint will always be binding,
the other decision variable is determined as p1x1 = m− p2x2.

It is also useful to define “budget shares”: w1 = p1x1
m

; w2 = p2x2
m

4.2.2 The Andreoni-Miller data

Andreoni & Miller’s (2002) data is contained in the file garp. The variables are as
defined in Section 4.2.1. Here we shall provide a description of the data, and report
on some exploratory analysis thereof.

There were 176 subjects in the experiment. Each subject was faced with a sequence
of decision problems in the form of budgets. Each budget had a different combi-
nation of endowment (m), price of keeping (p1), and price of giving (p2). These
combinations are shown in Table 2. The task subjects are required to perform for
each budget is to decide how much of the endowment (m) to keep for themselves
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Budget m p1 p2 Observations Mean amount sent to other
1 40 0.33 1 176 8.02
2 40 1 0.33 176 12.81
3 60 0.5 1 176 12.67
4 60 1 0.5 176 19.40
5 75 0.5 1 176 15.51
6 75 1 0.5 176 22.68
7 60 1 1 176 14.55
8 100 1 1 176 23.03
9 80 1 1 34 13.5
10 40 0.25 1 34 3.41
11 40 1 0.25 34 14.76

Table 2: Andreoni & Miller’s (2002) design.
Notes: There are 11 different budgets, each with a different combination of endow-
ment (m), price of keeping (p1), and price of giving (p2). In budgets 1-8, all 176
subjects participated; in budgets 9-11, only 34 participated. Final column shows
mean amount sent to other.

(p1x1), and how much to send to the other player (p2x2). The decision problems
were presented in a random order to each subject. Subjects were told that, when all
decisions had been made, one of the decision problems would be chosen at random
and carried out with another randomly chosen subject as the recipient.

Budgets 1–8 were faced by all 176 subjects. Budgets 9–11 were only faced by 34
of the subjects. The final column of Table 2 shows the average amount sent to the
other player for each budget. Clearly, there is a good amount of variation in this
outcome.

Note from Table 2 that for three of the problems, 7, 8, and 9, the two prices are
both one, implying that these tasks correspond to the standard dictator game. From
the second and sixth columns, we see that in these three tasks, average giving is
between 17–24% of the endowment, in close agreement with previous dictator game
experiments (Camerer 2003).

Figure 13 shows a (jittered) scatter of amount received by other against amount
received by self. This further highlights the wide variation in the amount of giv-
ing. This is partly a result of the richness of the design (with 11 different budget
constraints), and also a high apparent variation in preference for giving. As ex-
pected, there is a higher concentration of points in the lower-right region of the
plot, reflecting an overall bias towards giving-to-self (with 42% of the observations
on giving-to-other being zero). The “jitter” option has been used for the scatter so
that clusters of observations at particular points (e.g. on the horizontal axis) are
easily discernible.

Figure 14 shows a scatter of amount directed to other against endowment, with
smoother. The positive relationship evident here simply indicates that giving is a
“normal good”.
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Figure 13: Jittered scatter of data in (x1, x2) space.
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Figure 15: Amount received by other against price of giving to other (left pane),
and against price of giving to self (right pane), with smoothers.

Figure 15 shows smoothers of amount received by other against price of giving to
other (left pane) and against price of giving to self (right pane). The downward-
sloping curve seen in the left-hand graph is consistent with the “law of demand”;
the upward-sloping curve seen in the right-hand graph is consistent with the two
“goods” (amount received by other and amount received by self) being substitutes.

These results may be confirmed using a linear regression. Regression of amount
received by other on the two prices, with clustering at the subject level, gives the
following results. The effects of the two prices are very strong, and with signs as
expected on the basis of the two graphs in Figure 15.

. regress x2 p2 p1, vce(cluster i)

Linear regression Number of obs = 1510

F( 2, 175) = 61.20

Prob > F = 0.0000

R-squared = 0.1847

Root MSE = 28.661

(Std. Err. adjusted for 176 clusters in i)

------------------------------------------------------------------------------

| Robust

x2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

p2 | -39.00726 4.934956 -7.90 0.000 -48.74695 -29.26757

p1 | 14.47704 1.664276 8.70 0.000 11.1924 17.76167

_cons | 43.95138 4.663821 9.42 0.000 34.74681 53.15596

------------------------------------------------------------------------------

Next we add income (i.e. the endowment) into the regression. Income is seen to
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have a strongly positive effect, confirming that giving to other is a “normal good”.
The interpretation of its coefficient (0.265) is that when the dictator’s endowment
rises by one unit, ceteris paribus, amount received by other will rise by around one
quarter of one unit. However, a consequence of adding income to the regression is
that the effect of the price of giving to “self” is no longer significant. This is partly
a result of the strong positive correlation between m and p1 essentially causing p1
to take the role of “proxy” for m in the model in which the latter is excluded.

. regress x2 p2 p1 m, vce(cluster i)

Linear regression Number of obs = 1510

F( 3, 175) = 61.25

Prob > F = 0.0000

R-squared = 0.1976

Root MSE = 28.441

(Std. Err. adjusted for 176 clusters in i)

------------------------------------------------------------------------------

| Robust

x2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

p2 | -52.12677 5.063235 -10.30 0.000 -62.11964 -42.13391

p1 | 1.357528 1.783083 0.76 0.447 -2.161587 4.876643

m | .265248 .0277023 9.57 0.000 .2105744 .3199216

_cons | 47.92717 4.707122 10.18 0.000 38.63713 57.2172

------------------------------------------------------------------------------

It is obvious from Figure 13, and also from previous analysis of dictator game data
within this course, that there is an accumulation of zero observations in giving to
other. Around 42% of this sample consist of observations with giving equal to zero.
The linear regressions just performed do not take account of this accumulation of
zero observations. A model which does take account of this feature of the data is
the Tobit model, explained in detail in Section ??. We next estimate a Tobit model
of giving on the two prices and income, again with cluster-robust standard errors.
The results are as follows.

. tobit x2 p2 p1 m, vce(cluster i) ll(0)

Tobit regression Number of obs = 1510

F( 3, 1507) = 54.33

Prob > F = 0.0000

Log pseudolikelihood = -5027.146 Pseudo R2 = 0.0256

(Std. Err. adjusted for 176 clusters in i)

------------------------------------------------------------------------------

| Robust

x2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

p2 | -67.1347 7.049639 -9.52 0.000 -80.96285 -53.30656

p1 | 10.8052 3.910197 2.76 0.006 3.135191 18.4752

m | .3322818 .0380964 8.72 0.000 .2575541 .4070095

_cons | 34.41715 6.122105 5.62 0.000 22.4084 46.4259

-------------+----------------------------------------------------------------

/sigma | 42.59774 2.46888 37.75494 47.44055

------------------------------------------------------------------------------

Obs. summary: 628 left-censored observations at x2<=0

882 uncensored observations

0 right-censored observations

We see that the coefficient estimates from Tobit are considerably larger in magni-
tude than the corresponding OLS estimate. Most strikingly, the Tobit coefficient
of price of amount received by self (p1) is 10.81, eight times larger than the OLS
estimate of the same parameter, which is 1.36. Furthermore, the Tobit coefficient is
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strongly significant (p = 0.006) compared to a complete lack of significance under
OLS (p = 0.447). This emphatically confirms the importance of dealing with zero
censoring when analysing data sets of this type. This will be the focus in Section ??.

Of course, we can go one step further and estimate the random effects Tobit model.
The results are:

. xtset i t

. xttobit x2 p2 p1 m, ll(0)

Random-effects Tobit regression Number of obs = 1510

Group variable: i Number of groups = 176

Random effects u_i ~ Gaussian Obs per group: min = 8

avg = 8.6

max = 11

Integration method: mvaghermite Integration points = 12

Wald chi2(3) = 605.11

Log likelihood = -4663.2072 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

x2 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

p2 | -75.14353 4.942489 -15.20 0.000 -84.83063 -65.45643

p1 | 9.896787 5.060785 1.96 0.051 -.0221691 19.81574

m | .3672872 .0639333 5.74 0.000 .2419803 .4925941

_cons | 32.68706 6.512942 5.02 0.000 19.92193 45.4522

-------------+----------------------------------------------------------------

/sigma_u | 44.0585 3.276081 13.45 0.000 37.6375 50.4795

/sigma_e | 28.67666 .7433699 38.58 0.000 27.21968 30.13364

-------------+----------------------------------------------------------------

rho | .7024244 .0320737 .6367994 .7620325

------------------------------------------------------------------------------

The importance of between-subject heterogeneity is clearly seen from the large and
significant estimate of σu, of 44.06. The estimates are different as well: some of the
slope estimates, particularly that of price of giving to other, take even larger values
as a result of allowing for the heterogeneity.

4.2.3 Estimating the parameters of a CES utility function

In this section we will use the data set introduced in the previous sub-section to
estimate the parameters of a utility function for altruism.

Following Andreoni & Miller (2002) and others, we will assume the constant elas-
ticity of substitution (CES) utility function:

U(x1, x2) = [αxρ1 + (1− α)xρ2)]
1
ρ 0 ≤ α ≤ 1 −∞ ≤ ρ ≤ 1 (55)

The CES utility function (55) is used in many areas of economics. In the present
setting, the parameter α indicates selfishness, while the parameter ρ indicates will-
ingness to trade off equity and efficiency in response to price changes. Values of ρ
less than zero indicate a concern for equality in payoffs; values of ρ between zero
and one indicate a focus on efficiency. The elasticity of substitution, usually denoted
σ, may be deduced directly from ρ using:

σ =
1

1− ρ
(56)
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σ is clearly an increasing function of ρ, with values of ρ between zero and one (in-
dicating a focus on efficiency) being associated with values of σ between one and +∞.

A useful way of interpreting the elasticity of substitution, σ, is in terms of the cur-
vature of the indifference curves. The larger is σ, the less curved the indifference
curves become. As σ approaches +∞ the indifference curves become downward-
sloping straight lines, implying that the two goods are perfect substitutes, and that
all that matters is the total payoff. At the other extreme, if σ appraoches its lower
limit of zero, the indifference curves become L-shaped, implying perfect comple-
ments, and that all that matters is equality of payoffs. The intermediate case is
when σ = 1, implying Cobb-Douglas preferences: U = xα1x

1−α
2 .

Maximising (55) subject to the budget constraint (54), we arrive at the “Marshallian
demand fuction” for own pay-off:

w1 =
p

ρ
ρ−1

1

p
ρ
ρ−1

1 +
(

α
1−α

) 1
ρ−1 p

ρ
ρ−1

2

+ ε (57)

where w1 is, as previously mentioned, the share of the total allocation that is al-
located to “self”; that is: w1 = p1x1

m
. Note that a stochastic term (ε) has been

appended in (57) in order to turn the deterministic budget-share equation into an
estimable model. The equation for the second budget share w2 could easily be de-
duced from the deterministic part of (57) because w2 = 1 − w1. However, we only
need one of the two equations to estimate the two parameters. We will use (57).

Non-linear least squares is required to estimate the two parameters in (57). The
principle underlying non-linear least squares is exactly the same as ordinary least
squares. If the sample is of size n and the data set consists of the three variables
wi, p1i, p2i, i = 1, . . . , n, the problem is to minimise the following sum of squares with
respect to the two parameters α and ρ:

n∑
i=1

w1i −
p

ρ
ρ−1

1i

p
ρ
ρ−1

1i +
(

α
1−α

) 1
ρ−1 p

ρ
ρ−1

2

2

(58)

The reason why non-linear least squares is required is that (58) is a non-linear func-
tion of the two parameters, and there is therefore no closed form expression for the
solution to the minimisation problem, as there is when the model is linear. Instead,
a numerical routine is used to locate the solution.

The STATA command which carries out non-linear least squares is nl. As with the
regress command, it is possible to use the vce(cluster i) option to obtain cluster-
robust standard errors. Another option we use here is “initial”, in which starting
values for the non-linear optimisation are provided. This option turns out to be
essential - in the absence of starting values, estimation is not performed - although
it is not necessary for the starting values to be particularly close to the solution.

The nl command with the two options just discussed, together with the results when
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applied to the Andreoni & Miller (2002) data, are:

. nl (w1 = (p1^({rho}/({rho}-1)))/((p1^({rho}/({rho}-1))) ///

> +(({aa}/(1-{aa}))^(1/({rho}-1)))*(p2^({rho}/({rho}-1))))), ///

> initial(rho 0.0 aa 0.5) vce(cluster i)

(obs = 1510)

Iteration 0: residual SS = 122.2299

Iteration 1: residual SS = 115.4766

Iteration 2: residual SS = 115.4615

Iteration 3: residual SS = 115.4615

Iteration 4: residual SS = 115.4615

Nonlinear regression Number of obs = 1510

R-squared = 0.8804

Adj R-squared = 0.8798

Root MSE = .2767056

Res. dev. = 403.0932

(Std. Err. adjusted for 176 clusters in i)

------------------------------------------------------------------------------

| Robust

w1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

-------------+----------------------------------------------------------------

/rho | .272248 .0479813 5.67 0.000 .1775515 .3669445

/aa | .6918387 .0150264 46.04 0.000 .6621824 .721495

------------------------------------------------------------------------------

.

. nlcom sigma: 1/(1- _b[rho:_cons])

sigma: 1/(1- _b[rho:_cons])

------------------------------------------------------------------------------

w1 | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

sigma | 1.374095 .0905952 15.17 0.000 1.196531 1.551658

------------------------------------------------------------------------------

Following the nl command, we apply the nlcom command to deduce an estimate of
the elasticity of substitution, σ, using the formula (56). We see that this estimate
is 1.37 and the confidence interval provides evidence that the elasticity of substi-
tution is larger than one. This indicates that the subjects in this sample, overall,
attach somewhat more importance to efficiency than to equality in payoffs. The
estimate of α is 0.692. This may be interpreted as the proportion of the allocation
that the individual would take for themselves in a situation of equal prices. Being
significantly greater than 0.5 (again based on the confidence interval), this estimate
indicates that subjects are relatively selfish.

4.3 Estimation of Social Preference Parameters Using Dis-
crete Choice Models

4.3.1 The setting

In this section, we once again pursue the goal of estimating the parameters of a
utility function involving own payoff and other’s payoff. However, the experimental
approach is very different. Here, we are asking subjects to choose between hypothet-
ical allocations. The approach is very similar to that of Engelmann & Strobel (2004).

The task faced by a subject is to choose between three different (hypothetical) allo-
cations, A, B and C, say, of the type shown in Table 3. Importantly, the subject is
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Allocation A B C

Person 1 8 6 10
Person 2 8 6 7
Person 3 4 6 7
Total 20 18 24

Table 3: An example of three hypothetical allocations. The survey respondent is
given the identity of “Person 2”.

always given the identity of “Person 2”.

The three allocations in the example of Table 3 all have both attractions and draw-
backs, and it is reasonable to expect people to divide between the three when asked
to choose between them. A selfish individual would prefer allocation A, since, given
their assumed identity as “Person 2”, allocation A gives them a pay-off of 8 which
is higher than the pay-off they would recieve under B or C (6 and 7 respectively).

However, as we have seen many times in this course, not all individuals are selfish,
and some are highly altruistic. An individual who is “inequity-averse” is likely to
choose allocation B, since equality is perfect under this allocation, with all three
persons receiving the same pay-off.

In fact, there are different types of inequity aversion. It is useful to make a dis-
tinction between “disadvantageous” and “advantageous” inequality – a distinction
highlighted by Fehr & Schmidt (1999). To see the difference, we continue with the
example in Table 3, and consider a situation in which allocation B is not available,
and individuals are required to choose between A and C. Both A and C are unequal
allocations. An individual who is averse to “disadvantageous” inequality is likely to
choose A over C, since C is an allocation in which they (Person 2) are disadvantaged
relative to Person 1. An individual who is averse to “advantageous” inequality is
likely to choose C over A, since A is an allocation in which they (Person 2) are
advantaged relative to Person 3.

Some individuals are neither self-interested, nor overly concerned about inequity,
but instead are motivated by efficiency considerations. Such individuals simply
look for the allocation that is most efficient in terms of generating the highest total
pay-off for the group. We see that when faced with the allocations in Table 3, such
an individual would choose allocation C since this gives the highest total pay-off of
24.

Of course, it is unlikely that individuals are motivated by only one of the concerns
described above. It is more likely that all of the concerns matter, perhaps to varying
degrees. Hence we set out to estimate a utility function involving all of the concerns,
and applying to all individuals. The parameter estimates will convey the importance
of each concern.
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4.3.2 Formalising the criteria for choosing between allocations

Let xjk be the payoff to person k in allocation j. Each allocation has the following
attributes.

1. Efficiency: EFFj =
∑3

k=1 xjk

Efficiency is simply the sum of the payoffs over all persons, regardless of the distri-
bution. For the example in Table 3, the efficiency attributes for the three allocations
are:

EFFA = 20;EFFB = 18;EFFC = 24

2. Minimax: MMj = min(xjk, k = 1, 2, 3)

Minimax is the smallest payoff in the allocation. If an individual uses this as a
criterion, they are displaying an extreme form of inequality aversion since they are
only ever concerned with the welfare of the worst-off person. For the example in
Table 3, the minimax attributes for the three allocations are:

MMA = 4;MMB = 6;MMC = 7

3. Self: SELFj = xj2

“Self” is the decision-maker’s own payoff. Remember that the decision-maker is
assumed to take the role of Person 2; hence the definition of “self” as the payoff of
Person 2 in the allocation. An individual using “self” as their criterion is clearly
a selfish individual since they are concerned with their own welfare and have no
regard for the welfare of any other individual. For the example in Table 3, the
“self” attributes for the three allocations are:

SELFA = 8;SELFB = 6;SELFC = 7

The final two attributes that we consider derive from the well known “Fehr-Schmidt
utility function” (Fehr & Schmidt 1999). If there are n persons in total, this utility
function, for person i, is:

ui = xi − αi

∑
k 6=i max(xk − xi, 0)

n− 1
− βi

∑
k 6=i max(xi − xk, 0)

n− 1
(59)

The interpretation of (59) is as follows. Individual i’s utility is given by their own
payoff, penalised by the presence of two different types of inequality. The second
term on the right-hand side is the term that adjusts for “disadvantageous inequality”;
that is, inequality resulting from others receiving higher payoffs than themselves.
The final term is the term that adjusts for “advantageous inequality”; that is, in-
equality resulting from others receiving lower payoffs than themselves. It is usually
assumed that both types of inequality are undesirable, so the two parameters αi
and βi, respectively referred to as individual i’s coefficients of disadvantageous and
advantageous inequity aversion, are both expected to be positive. It is also assumed
that individuals care more about disadvantageous inequity than about advantageous
inequity, so that αi > βi. The denominators of the two inequity terms are present
simply to ensure that the measures to not rise with the number of persons in the
“economy”.
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In the case n = 3, the two measures of inequality just described become:

4a. (absence of) Disadvantageous inequality: FSDj = −1
2

∑
k 6=2max(xjk−xj2, 0)

4b. (absence of) Advantageous inequalty: FSAj = −1
2

∑
k 6=2max(xj2 − xjk, 0)

FSD and FSA are the attributes in which we are interested. In these acronyms,
“FS” stands for Fehr-Schmidt, and “D” and “A” for disadvantageous and advanta-
geous respectively. Defining them with a negative sign allows them to be treated as
positive attributes, that is, quantities that an inequity-averse individual would seek
to maximise.

For the example in Table 3, the attributes FSD and FSA for the three allocations
are:

FSDA = 0; FSDB = 0; FSDC = −3

2
FSAA = −2; FSAB = 0; FSAC = 0

4.3.3 Data

Simulated data closely resembling Engelmann and Strobel’s data is contained in the
file ES sim. Note that there are three rows for each subject, one row for each allo-
cation (this is known as a “long” data set). The attributes are named as in Section
4.3.2. y is a binary variable indicating which of the three allocations is chosen (1 if
chosen; 0 if not chosen).

4.3.4 The conditional logit model (CLM)

Let us henceforth use i to index an individual in the data set. Each individual
chooses one from J = 3 possible allocations. Suppose that individual i’s utility from
choosing allocation j is given by:

Uij = α1FSDij + α2FSAij + α3EFFij + α4MMij + εij = z′ijα + εij (60)

Note that the attribute variables have both i and j subscripts, indicating that dif-
ferent individuals face allocations with different sets of attributes. Note also that
there is no intercept in (60). This is because an intercept parameter would not be
identified, because, as is well known, adding a constant to a utility function does
not alter implied behaviour. For convenience, we have collected the list of attributes
together in the vector zij and the associated parameters into the vector α. The
term z′ijα may be referred to as the deterministic component of utility, and εij as
the random component.

We then assume that each individual chooses the allocation that yields the highest
utility. Formally, the observed decision variable is yij, and:
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yij = 1 if Uij = max (Ui1, Ui2 . . . UiJ)

yij = 0 otherwise (61)

We then need to consider what is the probability that individual i will choose allo-
cation j. This depends on what is assumed about the distribution of the random
component of utility.

yij = 1⇔ z′ijα + εij > z′ikα + εik ∀k 6= j

⇔ εik − εij < z′ijα− z′ikα ∀k 6= j (62)

For convenience, it is assumed that the εijs are independent and identically dis-
tributed (i.i.d.) with type I extreme value distribution (also known as the Gumbel
distribution), defined by the density function:

f(ε) = exp (−ε− exp(−ε)) −∞ < ε <∞ (63)

and the distribution function:

F (ε) = exp (− exp(−ε)) −∞ < ε <∞ (64)

It can be shown (Maddala 1983) that if the εijs are i.i.d. and have the distribution
defined in (63) and (64), then the probability of the event defined in (62), that is,
the probability of allocation j being chosen by individual i, is given by:

P (yij = 1) =
exp(z′ijα)∑J
k=1 exp(z

′
ikα)

(65)

The model defined by (65) is known as the conditional logit model. The likelihood
contribution associated with individual i is given by:

Li(α) =

∑J
k=1 yikexp(z

′
ikα)∑J

k=1 exp(z
′
ikα)

(66)

from which the sample log-likelihood is obtained as:

LogL(α) =
n∑
i=1

lnLi(α) (67)

4.3.5 Results

The parameters contained in the vector α in (60) are estimated by maximisation of
the likelihood function defined in (66) and (67) using the following STATA command:

. asclogit y FSD FSA EFF MM, case( i) alternatives(j) noconstant

The as at the beginning of the command name stands for “alternative-specific”.

The output looks like this:
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Iteration 0: log likelihood = -317.10088

Iteration 1: log likelihood = -308.55197

Iteration 2: log likelihood = -308.51212

Iteration 3: log likelihood = -308.51212

Alternative-specific conditional logit Number of obs = 990

Case variable: i Number of cases = 330

Alternative variable: t Alts per case: min = 3

avg = 3.0

max = 3

Wald chi2(4) = 80.96

Log likelihood = -308.51212 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

t |

FSD | .3267221 .1405881 2.32 0.020 .0511745 .6022697

FSA | .3447768 .1688655 2.04 0.041 .0138065 .6757472

EFF | .1879009 .0714842 2.63 0.009 .0477943 .3280074

MM | .0804075 .0895162 0.90 0.369 -.0950409 .255856

------------------------------------------------------------------------------

The two inequity aversion attributes have been included, as well as the efficiency
and minimax attributes. It appears (from this simulated data set) that subjects
display both types of inequity aversion: both FSD and FSA have significantly posi-
tive effects on utility. Efficiency appears to be even more important: the coefficient
of EFF is strongly significantly positive. The minimax attribute (MM) does not
appear to be important.

Recall that another attribute was SELF defined as payoff to self. It turns out that
the experimental design is such that when SELF is added to the above model, the
problem of perfect multicollinearity arises resulting in a failure to estimate the effect
of this variable. This is why SELF has been excluded.

4.3.6 The effect of subject characteristics

It is reasonable to expect individuals to value different criteria differently. In previ-
ous parts, we have allowed for this type of difference between subjects by building
unobserved heterogeneity into models. Here we will demonstrate an alternative ap-
proach: observed heterogeneity. Observed heterogeneity refers to the situation in
which differences between subjects can be explained by differences in subject char-
acteristics, perhaps the most obvious being gender.

The way in which subject characteristics are introduced in the CLM is through in-
teractions with the attribute variables. Let the variable malei be a dummy variable
taking the value 1 if subject i is male. An important point is that subject charac-
teristics have only an i subscript, as distinct from the attributes which have both
an i and a j subscript.

Let us extend the utility function (60) with two additional terms:

Uij = α1FSDij + α2FSDij ?malei + α3FSAij + α4FSAij ?malei

+α5EFFij + α6MMij + εij (68)
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The two additional terms are interactions between the dummy variable male and
the two inequity attributes. When these two variables are included in the model,
the results are as follows:

Alternative-specific conditional logit Number of obs = 990

Case variable: i Number of cases = 330

Alternative variable: j Alts per case: min = 3

avg = 3.0

max = 3

Wald chi2(6) = 85.42

Log likelihood = -299.6794 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

j |

FSD | .1907648 .1552983 1.23 0.219 -.1136143 .495144

male_FSD | .2535549 .1281861 1.98 0.048 .0023147 .504795

FSA | .5649655 .1879811 3.01 0.003 .1965293 .9334017

male_FSA | -.5760542 .192775 -2.99 0.003 -.9538863 -.1982221

EFF | .1606768 .0741216 2.17 0.030 .0154012 .3059525

MM | .1170375 .091562 1.28 0.201 -.0624207 .2964958

------------------------------------------------------------------------------

Here (not forgetting that the data is simulated), we see a very interesting result: the
significantly positive coefficient on the interaction male FSD indicates that males
exhibit more aversion to disadvantageous inequity than do females; the significantly
negative coefficient on male FSA indicates that females exhibit more aversion to
advantageous inequity than do males.
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5 Dealing with heterogeneity: Finite Mixture Mod-

els

5.1 Introduction

Finite mixture models, or just mixture models, are a class of model that offer a
means of separating subjects into different types. Different types do not only ex-
hibit different behaviour; the processes giving rise to behaviour also differ between
types. These models are labelled as “finite” mixture models because a finite num-
ber of types is being assumed. An “infinite” mixture model, if such a label were
used, would correspond to a random coefficient model, or random effects model, in
which it is assumed that there is continuous variable in some parameter indexing
behavioural type.

Finite mixture models are very important in experimetrics. This is because it is
becoming ever more widely accepted that different subjects are motivated in dif-
ferent ways, and to assume that all subjects operate according to one model is to
disrespect these differences. Often average behaviour is tracked and interpreted in
terms of the behaviour of a typical subject. However, if there are different types of
subject operating according to different decision processes, it is quite possible that
average behaviour will not be a close representation of the actual behaviour of any
of the subjects under study.

There is more than one possible approach to the estimation of finite mixture models.
The approach adopted here is as follows. Firstly, on the basis of economic theory,
the total number of types in the population is decided, and a label is assigned to
each. Then a parametric model is specified for the behaviour of each type. The
parameters of these various models are estimated altogether, along with the “mix-
ing proportions” - parameters revealing the proportion of the population who is of
each type. Once the model has been estimated, we can return to the data in or-
der to determine the posterior probability of each individual subject being of each
type. Note that there is no claim to be able to identify any individual subject as
belonging to any particular type with certainty, although, in situations where data
is informative, posterior type-probabilities can be very close to one.

We commence with a simple, somewhat contrived, example: a mixture of two nor-
mal distributions. Then we shall progress to a more realistic example of guesses in
the “Beauty Contest game”. Finally, we shall consider the more complex example
of giving in a public goods experiment.

5.2 Mixture of two normal distributions

Consider the variable y contained in the file mixture sim. There are 1000 observa-
tions. A histogram of the variable y is shown in Figure 16. The distribution appears
to be a mixture of two bell-shaped (i.e. probably normal) distributions, one with a
mean around 3, the other with a mean around 6.

If y represents the decision made by subjects in an experiment (on this occasion,
let us not concern ourselves about what decision is actually being made), we might
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Figure 16: A histogram of the variable y in the data set mixture sim.

say that subjects are of two types, and we would set about estimating the following
mixture model:

type 1: N
(
µ1, σ

2
1

)
type 2: N

(
µ2, σ

2
2

)
mixing proportions: p(type1) = p p(type2) = 1− p

The mixing proportions represent the proportions of the population who are of each
type. Note that there are five parameters to be estimated: µ1, σ1, µ2, σ2 and p.

The density associated with a particular value of y, conditional on the subject being
of type 1, is:

f (y|type1) =
1

σ1
φ

(
y − µ1

σ1

)
(69)

and the density conditional on being type 2 is:

f (y|type2) =
1

σ2
φ

(
y − µ2

σ2

)
(70)

Therefore the marginal density associated with an observation is obtained by com-
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bining (69) and (70) with the mixing proportions:

f(y;µ1, σ1, µ2, σ2, p) = p× 1

σ1
φ

(
y − µ1

σ1

)
+ (1− p)× 1

σ2
φ

(
y − µ2

σ2

)
(71)

Equation (71) is used as the likelihood contribution for each observation.

The sample log-likelihood, based on a sample y1, y2, . . . , yn is given by:

LogL =
n∑
i=1

ln f(yi;µ1, σ1, µ2, σ2, p) (72)

Maximising (72) with respect to µ1, σ1, µ2, σ2, and p, we will obtain MLEs of these
5 parameters.

5.2.1 Posterior type probabilities

Having estimated a mixture model, one obvious thing to do is to compute the
posterior probabilities of each subject being of each type. This involves Bayes’ rule.
For example, the posterior type 1 probability, given an observation y is:

P (type1|y) =
f(y|type1)P (type1)

f(y|type1)P (type1) + f(y|type2)P (type2)
(73)

=
p× 1

σ1
φ
(
y−µ1
σ1

)
p× 1

σ1
φ
(
y−µ1
σ1

)
+ (1− p)× 1

σ2
φ
(
y−µ2
σ2

)
5.2.2 The estimation program

A STATA program which estimates the model and then computes and plots pos-
terior probabilities is shown below. Table 4 provides a correspondence between
components of the likelihood function (72) and the names used in the program.

Component of LogL STATA name
µ1,µ2 mu1, mu2
σ1, σ2 sig1, sig2
p p

f (y|type1) = 1
σ1
φ
(
y−µ1
σ1

)
f1

f (y|type2) = 1
σ2
φ
(
y−µ2
σ2

)
f2

ln [f(y)] = ln
[
p× 1

σ1
φ
(
y−µ1
σ1

)
+ (1− p)× 1

σ2
φ
(
y−µ2
σ2

)]
logl

P (type1|y) postp1
P (type 2|y) postp2

Table 4: Components of LogL and corresponding STATA names.
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The annotated code is as follows. One important point is that the variable y is a
“global” variable, because it exists both inside and outside the likelihood-evaluation
program. This is why quotation marks are not used when y is used within the pro-
gram.

program drop _all

* LIKELIHOOD EVALUATION PROGRAM STARTS HERE:

program define mixture

args logl mu1 sig1 mu2 sig2 p

tempvar f1 f2

* GENERATE TYPE-CONDITIONAL DENSITIES:

quietly gen double ‘f1’=(1/‘sig1’)*normalden((y-‘mu1’)/‘sig1’)

quietly gen double ‘f2’=(1/‘sig2’)*normalden((y-‘mu2’)/‘sig2’)

* COMBINE TYPE-CONDITIONAL DENSITIES WITH MIXING PROPORTIONS

* TO GENERATE MARGINAL DENSITY. THIS IS THE FUNCTION THAT

* NEEDS TO BE MAXIMISED WHEN SUMMED OVER THE SAMPLE:

quietly replace ‘logl’=ln(‘p’*‘f1’+(1-‘p’)*‘f2’)

* GENERATE THE POSTERIOR TYPE PROBABILITIES, AND MAKE THEM

* AVAILABLE OUTSIDE THE PROGRAM:

quietly replace postp1=‘p’*‘f1’/(‘p’*‘f1’+(1-‘p’)*‘f2’)

quietly replace postp2=(1-‘p’)*‘f2’/(‘p’*‘f1’+(1-‘p’)*‘f2’)

quietly putmata postp1, replace

quietly putmata postp2, replace

end

* END OF LIKELIHOOD EVALUATION PROGRAM

* READ DATA:

use mixture_sim, clear

* INITIALISE TWO POSTERIOR PROBABILITY VARIABLES:

gen postp1=.

gen postp2=.

* SPECIFY STARTING VALUES, AND APPLY ML:

mat start=(3, 1.5, 6, 1.5, .5)

ml model lf mixture /mu1 /sig1 /mu2 /sig2 /p

ml init start, copy

ml maximize

* EXTRACT POSTERIOR TYPE PROBABILITY, AND PLOT THEM AGAINST y:

drop postp1 postp2

getmata postp1

getmata postp2

sort y

line postp1 postp2 y , lpattern(l -)

As usual, it is necessary to specify starting values for the parameters being esti-
mated. These are stored in the vector “start”. In this case, the starting values have
been obtained by examination of the histogram of y (see fig 16). In other situations,
starting values are obtained using simple estimation methods such as linear regres-
sion.
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5.2.3 Results

The results from executing the code presented in sect 5.2.2 above are as follows:

Number of obs = 1000

Wald chi2(0) = .

Log likelihood = -1908.2805 Prob > chi2 = .

------------------------------------------------------------------------------

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

eq1 |

_cons | 2.981757 .0743116 40.13 0.000 2.836109 3.127405

-------------+----------------------------------------------------------------

eq2 |

_cons | 1.014725 .0499721 20.31 0.000 .9167818 1.112669

-------------+----------------------------------------------------------------

eq3 |

_cons | 5.950353 .1158028 51.38 0.000 5.723384 6.177322

-------------+----------------------------------------------------------------

eq4 |

_cons | .9768525 .0721166 13.55 0.000 .8355064 1.118198

-------------+----------------------------------------------------------------

eq5 |

_cons | .6494311 .0296983 21.87 0.000 .5912235 .7076387

------------------------------------------------------------------------------

We see that the estimates of the five parameters (with standard errors) are:

µ̂1 = 2.982(0.074)

σ̂1 = 1.015(0.050)

µ̂2 = 5.950(0.116)

σ̂2 = 0.977(0.072)

p̂ = 0.649(0.030)

Hence we see that 64.9% of the population comes from the distributionN(2.982, 1.0152),
while the remaining 35.1% comes from N(5.950, 0.9772).

However, when considering any particular observation, we might not be certain
which one of the two distributions it comes from. This is why the posterior prob-
abilities are useful. Note that the variables containing the posterior probabilities
(postp1 and postp2) are generated inside the likelihood evaluation program. In
order to extract these variables, mata commands are required. The putmata com-
mand is used from within the program, and the getmata command is used outside it.

Below, we show the plot of the posterior probabilities against y.

sort y

line postp1 postp2 y , lpattern(l -)

This graph tells us that: observations below 3 are almost certain to be from the first
distribution; observations greater than 6 are almost certain to come from the second
distribution. For observations between 3 and 6, we cannot know with confidence
which distribution applies. For an observation with y = 4.70, both distributions are
equally likely to apply.
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Figure 17: Posterior probabilities of type 1 and type 2 in the mixture data.

5.3 The fmm command in STATA

fmm (for “finite mixture model”) is a STATA command that directly estimates mix-
ture models of the type considered in Sect. 5.2.

The required syntax is:

fmm 2: regress y

The number before the colon lets STATA know that there are 2 types in the mixture.
After the colon, the model to be estimated for each type is specified. Note that this
is a regression model with an intercept only (which is equivalent to estimating a
mean). The results from this command are as follows. Note that these results are
equivalent to the results obtained using ml in Sect. 5.2, except that some parameters
are named differently.

. fmm 2: regress y

Fitting class model:

Iteration 0: (class) log likelihood = -693.14718

Iteration 1: (class) log likelihood = -693.14718

Fitting outcome model:

Iteration 0: (outcome) log likelihood = -1340.7846

Iteration 1: (outcome) log likelihood = -1340.7846

Refining starting values:

Iteration 0: (EM) log likelihood = -2114.989
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Iteration 1: (EM) log likelihood = -2144.1684

Iteration 2: (EM) log likelihood = -2155.951

Iteration 3: (EM) log likelihood = -2159.9264

Iteration 4: (EM) log likelihood = -2159.9464

Iteration 5: (EM) log likelihood = -2157.8613

Iteration 6: (EM) log likelihood = -2154.6472

Iteration 7: (EM) log likelihood = -2150.8481

Iteration 8: (EM) log likelihood = -2146.7758

Iteration 9: (EM) log likelihood = -2142.6116

Iteration 10: (EM) log likelihood = -2138.4622

Iteration 11: (EM) log likelihood = -2134.3904

Iteration 12: (EM) log likelihood = -2130.4335

Iteration 13: (EM) log likelihood = -2126.6137

Iteration 14: (EM) log likelihood = -2122.9441

Iteration 15: (EM) log likelihood = -2119.432

Iteration 16: (EM) log likelihood = -2116.0816

Iteration 17: (EM) log likelihood = -2112.8942

Iteration 18: (EM) log likelihood = -2109.8699

Iteration 19: (EM) log likelihood = -2107.0071

Iteration 20: (EM) log likelihood = -2104.3034

Note: EM algorithm reached maximum iterations.

Fitting full model:

Iteration 0: log likelihood = -1909.8137

Iteration 1: log likelihood = -1908.4031

Iteration 2: log likelihood = -1908.2811

Iteration 3: log likelihood = -1908.2805

Iteration 4: log likelihood = -1908.2805

Finite mixture model Number of obs = 1,000

Log likelihood = -1908.2805

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

1.Class | (base outcome)

-------------+----------------------------------------------------------------

2.Class |

_cons | -.6165402 .130444 -4.73 0.000 -.8722058 -.3608746

------------------------------------------------------------------------------

Class : 1

Response : y

Model : regress

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

y |

_cons | 2.981758 .0743115 40.13 0.000 2.83611 3.127406

-------------+----------------------------------------------------------------

var(e.y)| 1.029668 .1014158 .848905 1.248921

------------------------------------------------------------------------------

Class : 2

Response : y

Model : regress

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

y |

_cons | 5.950353 .1158024 51.38 0.000 5.723385 6.177322

-------------+----------------------------------------------------------------

var(e.y)| .9542398 .1408942 .7144585 1.274495

------------------------------------------------------------------------------

Following the fmm command, The postestimation command predict may be used to
obtain the posterior type probabilities, as follows:

predict post1 , pos eq(component1)

predict post2 , pos eq(component2)
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The posterior probabilities (post1 and post2) thus obtained are identical to those
obtained in Sect. 5.2.3.

5.4 Application 1: A Level-k Model for the Beauty Contest
Game

Nagel (1995)’s “p-Beauty Contest game” takes the following form. Each player
chooses a whole number between 0 and 100. In the case in which p = 2/3, the
winner is the player whose number is closest to 2/3 of the average for the entire
group.

Let us imagine that this game has been played in a large lecture theatre, with 500
players. Simulated data is contained in the file beauty sim. The distribution of
simulated guesses is shown in Fig. 18. We see that the distribution is multi-modal,
with one clear modes at around 33 and and another around 22. Note that there is
another mode close to zero.

Figure 18: The distribution of simulated guesses for the beauty contest game.

A popular approach to modelling behaviour in this game is the level-k model, a
simple version of which is as follows. We first assume that there are a group of
individuals in the population who select a number completely at random, from a
uniform distribution on [0, 100]. Strictly speaking, we further assume that this draw
is rounded to the nearest integer. These individuals are labelled “level-0 reasoners”.
Then, there is a group who assume that all other players are level-0 reasoners, in-
ferring that the mean guess will be around 50, and therefore that the best guess
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is 33 (being the closest integer to 2/3 of 50). These players are labelled “level-1
reasoners”. Next, there is a group who assume that all others are level-1, with a
mean guess of 33, so that the best guess for this type of individual is 22; these are
level-2 reasoners. This sequence continues. Level-3 reasoners will guess 15. Level-4
reasoners will guess 10, and so on.

Note that if every player had immaculate powers of reasoning, they would all supply
a guess of 0, and they would all be correct and share the prize. However, needless
to say, this is not what happens when the game is played with real subjects.

The estimation problem is to use the data shown in the histogram to estimate the
proportion of the population who are at each level of reasoning. We require a para-
metric model. We assume that there are a finite number (J + 1) of types, and the
maximum level of reasoning is level J .

In practice, some subjects do go straight to the Nash Equilibrium of zero, so it is
sensible to allow for a “näıve-Nash-type” whose best guess is assumed to be zero.
They are labelled as “näıve” simply because, although their behaviour corresponds
to the Nash prediction, they are very unlikely to win the game. We will assign the
level-J label to this type.

Apart from Level-0 reasoners, who are assumed to choose from a uniform distribu-
tion, we assume that an individual’s choice is the best guess for an individual of
their type, plus a random normally distributed error with mean zero and standard
deviation σ. That is, we assume that if y∗j is the best guess for type j, then the
actual guess (y) will be determined by:(

y|type j
)

= y∗j + ε ε ∼ N
(
0, σ2

)
j = 1, ..., J . (74)

These assumptions give us the conditional density functions for each type:

f(y|L0) = 1/100 0 ≤ y ≤ 100

f(y|Lj) =
1

σ
φ

(
y − y∗j
σ

)
0 ≤ y ≤ 100 j = 1, ..., J . (75)

We also assume that the population is made up of the J + 1 types with mixing pro-
portions p0, p1, · · · , pJ . Combining the mixing proportions with the conditional den-
sities (75) gives us the sample log-likelihood (for a sample of guesses yi, i = 1, ..., n):

LogL =
n∑
i=1

ln

[
p0

100
+

J∑
j=1

pj
1

σ
φ

(
yi − y∗j
σ

)]
. (76)

We set J = 5, and the “best guesses” are y∗1 = 33, y∗2 = 22, y∗3 = 15, y∗4 = 10, y∗5 = 0.
Note that the best guess for level 5 is zero, because, as noted above, we assign level
J to “näıve-Nash” subjects. The code required to maximise the log-likelihood func-
tion is:

program define beauty_mixture

args lnf p1 p2 p3 p4 p5 sig

tempvar f0 f1 f2 f3 f4 f5 l
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quietly{

gen double ‘f0’=0.01

gen double ‘f1’=(1/‘sig’)*normalden((y-33.5)/‘sig’)

gen double ‘f2’=(1/‘sig’)*normalden((y-22.4)/‘sig’)

gen double ‘f3’=(1/‘sig’)*normalden((y-15.0)/‘sig’)

gen double ‘f4’=(1/‘sig’)*normalden((y-10.1)/‘sig’)

gen double ‘f5’=(1/‘sig’)*normalden((y-0)/‘sig’)

gen double ‘l’=(1-‘p1’-‘p2’-‘p3’-‘p4’-‘p5’)*‘f0’ ///

+‘p1’*‘f1’+‘p2’*‘f2’+‘p3’*‘f3’+‘p4’*‘f4’+‘p5’*‘f5’

replace postp0=(1-‘p1’-‘p2’-‘p3’-‘p4’-‘p5’)*‘f0’/‘l’

replace postp1=‘p1’*‘f1’/‘l’

replace postp2=‘p2’*‘f2’/‘l’

replace postp3=‘p3’*‘f3’/‘l’

replace postp4=‘p4’*‘f4’/‘l’

replace postp5=‘p5’*‘f5’/‘l’

replace ‘lnf’=ln((1-‘p1’-‘p2’-‘p3’-‘p4’-‘p5’)*‘f0’+‘p1’*‘f1’ ///

+‘p2’*‘f2’+‘p3’*‘f3’+‘p4’*‘f4’+‘p5’*‘f5’)

putmata postp0, replace

putmata postp1, replace

putmata postp2, replace

putmata postp3, replace

putmata postp4, replace

putmata postp5, replace

}

end

gen postp0=.

gen postp1=.

gen postp2=.

gen postp3=.

gen postp4=.

gen postp5=.

mat start=(0.3, 0.4, 0.1, 0.1,0.05, 2)

ml model lf beauty_mixture /p1 /p2 /p3 /p4 /p5 /sig

ml init start, copy

ml maximize

nlcom p0: 1-_b[p1:_cons]-_b[p2:_cons]-_b[p3:_cons]-_b[p4:_cons]-_b[p5:_cons]

drop postp*

getmata postp0

getmata postp1

getmata postp2

getmata postp3

getmata postp4

getmata postp5

sort y

line postp0 postp1 postp2 postp3 postp4 postp5 y , lpattern(- l l l l l)

Note that the five mixing proportions p1, ..., p5 are estimated, and then an estimate
of p0 is deduced using the delta method. The results are:

. mat start=(0.3, 0.4, 0.1, 0.1,0.05, 2)

. ml model lf beauty_mixture /p1 /p2 /p3 /p4 /p5 /sig

. ml init start, copy

. ml maximize

Number of obs = 500
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Wald chi2(0) = .

Log likelihood = -1985.0613 Prob > chi2 = .

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

p1 |

_cons | .3982665 .023804 16.73 0.000 .3516116 .4449213

-------------+----------------------------------------------------------------

p2 |

_cons | .1128533 .0163975 6.88 0.000 .0807148 .1449919

-------------+----------------------------------------------------------------

p3 |

_cons | .0898775 .0159347 5.64 0.000 .0586461 .121109

-------------+----------------------------------------------------------------

p4 |

_cons | .0462681 .0135852 3.41 0.001 .0196415 .0728946

-------------+----------------------------------------------------------------

p5 |

_cons | .0500939 .0117892 4.25 0.000 .0269876 .0732002

-------------+----------------------------------------------------------------

sig |

_cons | 1.929627 .1027345 18.78 0.000 1.728271 2.130982

------------------------------------------------------------------------------

.

. nlcom p0: 1-_b[p1:_cons]-_b[p2:_cons]-_b[p3:_cons]-_b[p4:_cons]-_b[p5:_cons]

p0: 1-_b[p1:_cons]-_b[p2:_cons]-_b[p3:_cons]-_b[p4:_cons]-_b[p5:_cons

> ]

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

p0 | .3026407 .029052 10.42 0.000 .2456999 .3595815

------------------------------------------------------------------------------

We see that the mixing proportions and the standard deviation of the error term
are estimated to be:

p̂0 = 0.303(0.029)

p̂1 = 0.398(0.024)

p̂2 = 0.113(0.016)

p̂3 = 0.090(0.016)

p̂4 = 0.046(0.014)

p̂5 = 0.050(0.012)

σ̂ = 1.930(0.103)

It appears that in this (simulated) data set, around 30% of subjects are estimated
to be level-0. Of the remainder, in agreement with similar studies that use real
data, the majority are divided between levels 1, 2 and 3. The proportion of “näıve
Nash-types” is 0.05.

We may then consider the posterior type probabilities which have been generated
in the usual way using Bayes’ rule. It is sensible to plot these against the subject’s
guess. This is done in Fig. 19. The dashed curve represents the posterior probability
of level-0. Note that this is close to 1 for any subject whose guess is greater than
about 40. The other posterior probabilities peak in different positions, as expected.
The curve peaking at 33 is the level-1 posterior probability; the one peaking at 22
is that for level-2; the one at 15 is for level-3; the one at 10 is for level 4. The curve
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peaking at zero is for level-5, the “näıve Nash-type”. The position of this last curve
indicates that subjects whose guess is zero or a very small positive number may be
categorised as “näıve Nash”.

It is perhaps interesting that the dashed line (probability of being level-0) appears
to reach peaks in the areas between the various “best guesses”. If for example, if a
subject’s guess is 27 or 28 (i.e. roughly half way between the best guess for levels 1
and 2) they are neither likely to be level-1 or level-2, and are instead categorised as
level-0, as indicated by the peak in the dashed curve in the vicinity of this point.

Finally, it is interesting to consider what the winning guess is. The mean of the
simulated sample is 32.5, implying that the winning guess is 22. The vertical line
drawn in fig 19 represents this winning guess. This happens to be the best guess for
a level-2 type. Accordingly, we see that the probability of the winner being level-2 is
around 0.86. We also see that the winner has a perhaps surprisingly high probability
of around 0.14 of being level-0.

Figure 19: Posterior type probabilities in the level-k model.

5.5 Application 2: A public goods experiment

5.5.1 Background

In a typical public goods experiment, each subject has to divide an endowment
between a public account and a private account. Total contributions to the pub-
lic account are then multiplied up by some factor and divided equally between the
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group of participants.

If everyone is a selfish agent, the game has a unique Nash equilibrium consisting
of zero contribitions by every subject. In experiments, a substantial proportion of
subjects do indeed contribute zero. However, a sizeable proportion of subjects also
contribute positively, with much variation in contributions both between and within
subjects, and the objective of most experiments is to investigate the motivations
behind such positive contributions.

In this part of the course, we develop a model which allows for a variety of motiva-
tions. It uses data from a real experiment (Bardsley 2000), whose design is tailored
towards separate identification of these various motivations. The key feature of the
experimental design is that subjects take turns to contribute, and each observes the
contributions made by subjects placed earlier in the sequence. Also, the task is
repeated, so the resulting data is panel data.

A number of econometric issues need to be addressed. Most importantly, it is clear
from previous literature that there are different types of agent in the population,
each with different contribution motives. Hence, a mixture model, of the type used
earlier in other contexts, is appropriate for separating the various subject types.

The mixture model that we develop assumes three types. A “reciprocator” is a
subject who contributes more when contributions by others placed earlier in the
sequence are higher. We capture reciprocity by allowing the (reciprocator) subject’s
contribution to depend on the median of previous contributions within the sequence.
A “strategist” is a subject who is selfish, but is willing to make positive contributions
in anticipation of reciprocity by others placed later in the sequence. Since as the
sequence progresses there are less subjects left to play, there should be less incen-
tive for strategists to contribute the later a subject’s position within the game. For
example, for a strategist in last position, there is definitely no contribution motive.
Hence for strategists, there should be an inverse relationship between contributions
and subjects’ position in the sequence. We therefore define “strategists” as agents
whose contribution depends only on their position in the sequence. In last position
we would expect them to contribute nothing. Finally, a “free-rider” is a subject who
displays a tendency to contribute zero regardless of the behaviour of other subjects’
or of their position in the sequence.

Application of the mixture framework in this setting is more complicated than in
previous examples, because of the panel structure of the data. This is a further
econometric issue to be addressed.

Another potential influence on a subject’s contribution is task number. One almost
universal finding in public goods games is a downward trend in contributions as
the game is repeated. Standard explanations are in terms of a learning process.
Subjects are learning, either about the game’s incentive structure (i.e. learning to
be rational), or about others’ behaviour (social learning). A novel feature of this
experimental design is that, for reasons to be explained in the next sub-section, it
removes the effect of social learning; any decay in contributions over the course of the
experiment will be attributable exclusively to learning about the incentive structure.
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A final econometric issue is censoring. Contributions constitute a doubly censored
dependent variable, since the lowest possible contribution is zero, and the highest
possible contribution is the amount of the endowment. A two-limit Tobit model
(Nelson 1976) is therefore required in order to obtain consistent estimates of the
effects of experimental variables.

5.5.2 Experiment

We will use data from the experiment of Bardsley (2000). There are 98 subjects,
divided into groups of size 7. Each subject performs 20 tasks.

The experimental design has a number of distinctive features. Firstly, within a sin-
gle game, subjects take turns to contribute, and each subject observes the sequence
of previous contributions. There are two reasons why this is important. Firstly,
given that it is possible for a subject to observe previous contributions of others,
it is possible for us to be able to assess the extent to which their contribution is
driven by the previous contributions of others. That is, it becomes possible to test
for reciprocity. Secondly, given that a subject are aware of their own position in
the ordering, they will clearly know how many subjects are contributing after them,
and they will therefore be in a position to assess the benefits from “strategic” con-
tribution. By investigating the effect of position in the ordering on contribution, it
therefore becomes possible for us to test for strategic behaviour.

Another distinctive feature of this experiment is the use of the “Conditional Infor-
mation Lottery” (CIL) 9 as an incentive mechanism. In a CIL, the game played
by the subject is camouflaged amongst a set of 19 (in this case) controlled fictional
tasks. Conditional on a task’s being the real one, the task information describes the
real game (so “others’ behaviour” is as shown). Subjects are told beforehand that
only one task is a real game, that in the remainder, “others’ behaviour” is simply
an artefact of the design, and that only the real task is to be paid out. Subjects do
not know which task is the real task, and it is therefore reasonable to suppose that
they treat each task as if it is the real task.

The CIL is similar to the Random Lottery Incentive (RLI) mechanism, in the sense
that only one from a set of tasks is for real and subjects do not know which is the
real task until the end of the experiment. Unlike the RLI, however, the experimenter
knows which task is for real from the start.

The main benefit from using the CIL is that it removes the effect of social learning.
This is because subjects are aware that only one game is actually being played with
the other subjects in the group. Given that a subject is temporarily assuming that
the game currently being played is the real game, it is logical for that subject also to
assume that all previous tasks were fictional, so anything learnt from those previous
tasks cannot logically be about the behaviour of other subjects in the group. For
this reason any decay in contributions over the course of the experiment will be
attributable exclusively to learning about the incentive structure.

9see Bardsley (2000) for a full explanation of the CIL.
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5.5.3 The data

The data set of Bardsley (2000) is contained in the file bardsley.

As noted previously, 98 subjects were observed over 20 tasks. This is clearly panel
data, and the best way to present panel data is using the xtline command, preceded
by xtset:

xtset i t

xtline y

The result is shown in Figure 20. This clearly shows the extent of between-subject
heterogeneity.
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Figure 20: Time-series plots of contribution separately by subject

It is also revealing to examine the pooled distribution of contributions. A histogram
of this variable is shown in Figure 21. The histogram clearly reveals censoring at
zero, and to a lesser extent, censoring at the upper limit, 10. The overall mean
contribution was 2.711, compared with a median of 1.0, this difference confirming
the clear positive skew evident in the histogram.

In order to give a feel for the extent of between-subject variation, Figure 22 shows
the distribution of the number of zero contributions made by each subject. Apart
from establishing the wide variation in behaviour, Figure 22 is useful in providing a
rough estimate of the number of free riders in the sample. Remembering the (strict)
definition of a free-rider as a subject contributing zero on every occasion, we see
that 14 of the 98 subjects (14.3%) satisfy this definition. However, the definition of
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Figure 21: Distribution of contributions in Bardsley’s experiment

free riders which we incorporate in estimation is less rigid than this. We include a
tremble parameter which allows a small probability of subjects setting their contri-
bution completely at random on any task. This means that a genuine free rider may
be observed making positive contributions on a small number of occasions. Fig 22 is
useful because the clearly discernible cluster of 24 subjects (24.5%) who contribute
zero on at least 16 out of 20 occasions, may reasonably be tentatively identified as
free-riders who are subject to a tremble.

It is also useful to use graphical methods to investigate the nature of the effects of
the various determinants of contribution. For this purpose, we present three scatter
plots with lowess smoothers in Fig 23. Since the effects of these variables cannot ap-
ply to the behaviour of free-riders, contributions of the 24 subjects identified loosely
as free-riders in the context of Fig 22 above are excluded from Fig 23. The scatters
themselves are clearly uninformative since the vast majority of the possible combi-
nations of MED and contribution are represented in the plots. For this reason, we
include “jitter” in the scatterplots to make it possible at least to see which loca-
tions contain the most points. We also include Lowess smoothers, which plot the
estimated conditional mean of contribution.

The Lowess smoothers in Fig 23 reveal that all three variables appear to have an
impact on contribution. Moreover, the direction of each effect is in accordance with
theoretical predictions: the median of previous contributions has a positive effect, as
predicted by reciprocity theory; order in the sequence has a negative effect, implying
strategic behaviour; task number has a negative effect, implying a process of learn-
ing about the game. We also see that the three effects are monotonic and roughly
linear. These observations are useful in guiding the specification of the parametric
model developed in the next section.
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Figure 22: A histogram of the number of zero contributions by each subject

5.5.4 The Finite Mixture 2-Limit Tobit Model with tremble

The econometric analysis used here is similar to that of Bardsley & Moffatt (2007).

We assume that there are n subjects, each of whom has been observed over T tasks.
Let yit be the observed contribution by subject i in task t. The variable yit has a
lower limit of 0 and an upper limit of 10. The two-limit tobit model (Nelson 1976),
with limits 0 and 10, is therefore appropriate. To adopt conventional terminology
in limited dependent variable modelling, we refer to zero contributions as being in
“regime 1”, contributions greater than 0 but less than 10 in “regime 2”, and contri-
butions of 10 in “regime 3”.

The underlying desired contribution is y∗it and this will be assumed to depend lin-
early on a set of explanatory variables. However, as explained in Sect 5.5.1, we
are assuming that each subject is one of three types: reciprocator (rec), strategist
(str) and free-rider (fr), and the determination of y∗it for a given subject depends
crucially on which type that subject is. An important feature of the model (and
finite mixture models in general) is that there is no switching between types: given
that a particular subject is of a given type, the subject is of that type for every task
undertaken.

For reciprocators and strategists, we specify the following latent model for the de-
sired contribution (free-riders are treated separately since no explanatory variables
are relevant to their contribution):
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Figure 23: Jittered scatter plots and Lowess smoothers of contribution against (i)
median of previous contributions (ii) order in sequence (iii) task number. Free-riders
excluded.

reciprocator: y∗it = β10 + β11MEDit + β13(TSKit − 1) + εit,rec (77)

strategist: y∗it = β20 + β22(ORDit − 1) + β23(TSKit − 1) + εit,str

i = 1, ..., n t = 1, ..., T

εit,rec ∼ N(0, σ2
1) εit,str ∼ N(0, σ2

2)

where ORDit is subject i’s position in the group for the tth task solved, MEDit is
the median of previous contributions by other subjects in the group , and TSKit

is the task number 10. Reciprocity implies β11 > 0, while strategic behaviour im-
plies β22 < 0. The parameters β13 and β23 represent learning by reciprocators and
strategists respectively, and are expected to be negative. The reason for subtracting
one from TSK and ORD is to ensure that the intercept in each equation has a
convenient interpretation: expected contribution for a subject in first position in
the first task.

When ORD = 1, MED is clearly not defined, but (following Bardsley & Moffatt
(2007, see their Table II, note 4)) will be set to 8.00 for the purpose of estimation;
this value is obtained by a trial and error process, being that which maximises the
log-likelihood. It could usefully be interpreted as subjects’ a priori expectation of

10TSK is not the same as t, since some of the tasks are part of a separate experiment. While t
goes from 1 to 20, the range of TSK is from 1 to 30.
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others’ contributions, formed before the start of the experiment. The relatively high
value embodies the idea that reciprocators start the game with an optimistic outlook
regarding the generosity of other players.

The relationship between desired contribution y∗it and actual contribution yit is spec-
ified by the following censoring rules:

For reciprocators and strategists:

yit =


0 if y∗it ≤ 0

y∗it if 0 < y∗it < 10

10 if y∗it ≥ 10

(78a)

For free riders:

yit = 0 ∀t (78b)

As mentioned in sect 5.5.3, we also introduce a “tremble parameter”, ω (see Mof-
fatt & Peters (2001)). On any single response, with probability ω a subject loses
concentration and chooses randomly between the eleven possible contributions. One
purpose of this parameter is to relax the rigid segregation rules between the three
subject types. If, for example, a subject contributes zero on every occasion except
one, we wish to assign a positive probability to this subject being a free-rider who
lost concentration on one occasion. The presence of the tremble parameter allows
this.

Loomes et al. (2002), in their econometric models of risky choice, include a tremble
parameter which decays in magnitude in the course of the experiment, to allow for a
learning process: subjects are less likely to make “random” choices when they have
more experience. A similar strategy is adopted here. We specify:

ωit = ω0exp [ω1(TSKit − 1)] (79)

There are now two parameters associated with the tremble: ω0 represents the trem-
ble probability at the start of the experiment, while ω1 represents the rate of decay.
We expect ω1 to take a negative value, and the larger it is in magnitude, the faster
the implied decay.

For each regime and each subject type, we have the following likelihood contribu-
tions for a single response, where Φ(.) and φ(.) are the standard normal c.d.f. and
p.d.f. respectively:

Regime 1 (y = 0):

P (yit = 0|i = rec) = (1− ωit)Φ
(
−β10 + β11MEDit + β13(TSKit − 1)

σ1

)
+
ωit
11

P (yit = 0|i = str) = (1− ωit)Φ
(
−β20 + β22(ORDit − 1) + β23(TSKit − 1)

σ2

)
+
ωit
11

P (yit = 0|i = fr) = 1− 10ωit
11

(80a)
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Regime 2 (0 < y < 10):

f (yit|i = rec) = (1− ωit)
1

σ1
φ

(
yit − β10 − β11MEDit − β13(TSKit − 1)

σ1

)
+
ωit
11

f (yit|i = str) = (1− ωit)
1

σ2
φ

(
yit − β20 − β22(ORDit − 1)− β23(TSKit − 1)

σ2

)
+
ωit
11

f (yit|i = fr) =
ωit
11

(80b)

Regime 3 (y = 10):

P (yit = 10|i = rec) = (1− ωit)
[
1− Φ

(
10− β10 − β11MEDit − β13(TSKit − 1)

σ1

)]
+
ωit
11

P (yit = 10|i = str) = (1− ωit)
[
1− Φ

(
10− β20 − β22(ORDit − 1)− β23(TSKit − 1)

σ2

)]
+
ωit
11

P (yit = 10|i = fr) =
ωit
11

(80c)

The manner in which the tremble parameter appears in (80) may require explana-
tion. When a tremble occurs, each of the 11 outcomes, 0-10, is each equally likely,
hence the term ωit/11 appearing in nearly every equation. In regime 2, what is
required is a density, not a probability, so we imagine that when a tremble occurs
contributions are realisations from a continuous uniform distribution on (−0.5, 10.5),
whence the density associated with any particular realisation is ωit/11.

It is the existence of the three distinct types of subject that leads to a finite mixture
model. We introduce three “mixing proportions”, prec, pstr and pfr, which represent
the proportion of the population who are reciprocators, strategists and free-riders
respectively. Since these three parameters sum to unity, only two are estimated.

The Likelihood contribution for subject i is:

Li = prec

T∏
t=1

P (yit = 0|rec)Iyit=0f(yit|rec)I0<yit<10P (yit = 10|rec)Iyit=10

+pstr

T∏
t=1

P (yit = 0|str)Iyit=0f(yit|str)I0<yit<10P (yit = 10|str)Iyit=10

+pfr

T∏
t=1

P (yit = 0|fr)Iyit=0f(yit|fr)I0<yit<10P (yit = 10|fr)Iyit=10 (81)

where I(.) is the indicator function (taking the value 1 if the subscripted expression
is true, 0 otherwise), and the nine conditional probabilities/densities are specified
in (80) above.

The sample log-likelihood is then:

LogL =
n∑
i=1

log (Li) (82)

LogL is maximised to obtain MLEs of the eight parameters appearing in (80), and
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in addition the two tremble parameters and two of the three mixing proportions.
The total number of estimated parameters in the full model is 12. This model may
be described as the “finite-mixture 2-limit tobit model with tremble”.

5.5.5 Program

As mentioned, the panel structure of this data set is a complicating feature. Each
subject is observed 20 times. When computing the likelihood contribution for a
given subject, we require the joint probability of all 20 of the decisions made by
that subject. In practical terms, this means that we require a different likelihood
evaluator in the ML program from that used in previous examples.

There are a number of different likelihood evaluators in STATA. The one that was
used earlier was lf (linear form). A feature of the log-likelihood function defined in
(81) and (82) is that it does not satisfy the linear form restrictions, and therefore
lf cannot be used. This is because the likelihood contributions that need to be
summed in order to obtain the sample log-likelihood are not each derived from the
information in a single row of the data, but are instead derived from the entire block
of rows corresponding to a given subject. There is only one likelihood contribution
for each such block of rows. Because of this, the d-family evaluators are required in
place of the lf evaluator. The simplest of these is the d0 evaluator, which simply
requires the log-likelihood contributions to be evaluated. This is the one that will
be used here. The d1 and d2 evaluators require analytical derivatives of the log-
likelihood to be programmed as well as the function evaluation.

The STATA code is presented below. Table 5 gives the names in the code corre-
sponding to each of the components in the construction of LogL above. One section
of the code which may require explanation is:

by i: replace ‘pp1’=exp(sum(ln(max(‘p1’,1e-12))))

by i: replace ‘pp2’=exp(sum(ln(max(‘p2’,1e-12))))

by i: replace ‘pp3’=exp(sum(ln(max(‘p3’,1e-12))))

This essentially takes the product of the probabilities contained in (in the first
case) p1, over all T observations for subject i. The reason why we apply the three
functions exp(sum(ln(.))) is simply because, although STATA has a “sum” function
(which takes the sum of a variable over observations), it does not have a a “product”
function. Hence we evaluate the required product by exploiting the identity:

∏
t

pt ≡ exp

(∑
t

ln pt

)
(83)

The reason why we take the log of max(p1, 1e − 12), rather than simply p1, is to
prevent the numerical problems that would arise if the probabilities were ever ex-
tremely close to zero.

Note that the mixing proportion for the third type (p3) is deduced from p1 and
p2 using the delta method. Note also that the final section of the code generates
posterior type probabilities. This will be discussed in section 5.5.7.

The annotated code is as follows.
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Component of LogL STATA name
β10, β11, β13 theta1
β20, β22, β23 theta2
σ1, σ2 sig1, sig2
ω0, ω1, ω w0, w1, w
prec, pstr, pfr p rec, p str, p fr
P (y = 0|rec), P (y = 0|str), P (y = 0|fr) p1 1, p2 1, p3 1
f(y|rec), f(y|str), f(y|fr); 0 < y < 10 p1 2, p2 2, p3 3
P (y = 10|rec), P (y = 10|str), P (y = 10|fr) p1 3, p2 3, p3 3
P (yit = 0|rec)Iyit=0f(yit|rec)I0<yit<10P (yit = 10|rec)Iyit=10 p1
P (yit = 0|str)Iyit=0f(yit|str)I0<yit<10P (yit = 10|str)Iyit=10 p2
P (yit = 0|fr)Iyit=0f(yit|fr)I0<yit<10P (yit = 10|fr)Iyit=10 p3∏T

t=1 P (yit = 0|rec)Iyit=0f(yit|rec)I0<yit<10P (yit = 10|rec)Iyit=10 pp1∏T
t=1 P (yit = 0|str)Iyit=0f(yit|str)I0<yit<10P (yit = 10|str)Iyit=10 pp2∏T
t=1 P (yit = 0|fr)Iyit=0f(yit|fr)I0<yit<10P (yit = 10|fr)Iyit=10 pp3

Li pp
LogL =

∑n
i=1 log (Li) lnpp

P (i = rec|yi1, ..., yiT ); P (i = str|yi1, ..., yiT ); P (i = fr|yi1, ..., yiT ) postp1; postp2; postp3

Table 5: Components of LogL and corresponding STATA names.

* ESTIMATION OF MIXTURE MODEL FOR BARDSLEY DATA

prog drop _all

* LIKELIHOOD EVALUATION PROGRAM STARTS HERE:

program define pg_mixture

args todo b lnpp

tempvar p1_1 p2_1 p3_1 p1_2 p2_2 p3_2 p1_3 p2_3 p3_3 p1 p2 p3 pp1 pp2 pp3 pp w

tempname theta1 theta2 sig1 sig2 w0 w1 p_rec p_str

* ASSIGN PARAMETER NAMES TO THE ELEMENTS OF THE PARAMETER VECTOR b:

mleval ‘theta1’ = ‘b’, eq(1)

mleval ‘theta2’ = ‘b’, eq(2)

mleval ‘sig1’ = ‘b’, eq(3) scalar

mleval ‘sig2’=‘b’, eq(4) scalar

mleval ‘w0’=‘b’, eq(5) scalar

mleval ‘w1’=‘b’, eq(6) scalar

mleval ‘p_rec’=‘b’, eq(7) scalar

mleval ‘p_str’=‘b’, eq(8) scalar

quietly{

* INITIALISE THE p* VARIABLES WITH MISSING VALUES:

gen double ‘p1_1’=.

gen double ‘p2_1’=.

gen double ‘p3_1’=.

gen double ‘p1_2’=.

gen double ‘p2_2’=.

gen double ‘p3_2’=.

gen double ‘p1_3’=.

gen double ‘p2_3’=.

gen double ‘p3_3’=.

gen double ‘p1’=.

gen double ‘p2’=.

gen double ‘p3’=.

gen double ‘pp1’=.

gen double ‘pp2’=.

gen double ‘pp3’=.
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gen double ‘pp’=.

* GENERATE THE TREMBLE PROBABILITY:

gen double ‘w’=‘w0’*exp(‘w1’*tsk_1)

* COMPUTE TYPE-CONDITIONAL DENSITIES UNDER REGIME 1:

replace ‘p1_1’=(1-‘w’)*normal(-‘theta1’/‘sig1’)+‘w’/11

replace ‘p2_1’=(1-‘w’)*normal(-‘theta2’/‘sig2’)+‘w’/11

replace ‘p3_1’=1-(10/11)*‘w’

* COMPUTE TYPE-CONDITIONAL DENSITIES UNDER REGIME 2:

replace ‘p1_2’=(1-‘w’)*(1/‘sig1’)*normalden((y-‘theta1’)/‘sig1’)+‘w’/11

replace ‘p2_2’=(1-‘w’)*(1/‘sig2’)*normalden((y-‘theta2’)/‘sig2’)+‘w’/11

replace ‘p3_2’=‘w’/11

* COMPUTE TYPE-CONDITIONAL DENSITIES UNDER REGIME 3:

replace ‘p1_3’=(1-‘w’)*(1-normal((10-‘theta1’)/‘sig1’))+‘w’/11

replace ‘p2_3’=(1-‘w’)*(1-normal((10-‘theta2’)/‘sig2’))+‘w’/11

replace ‘p3_3’=‘w’/11

* MATCH TYPE-CONDITIONAL DENSITIES TO ACTUAL REGIMES (d IS REGIME):

replace ‘p1’ = (d==1)*‘p1_1’+(d==2)*‘p1_2’+(d==3)*‘p1_3’

replace ‘p2’ = (d==1)*‘p2_1’+(d==2)*‘p2_2’+(d==3)*‘p2_3’

replace ‘p3’ = (d==1)*‘p3_1’+(d==2)*‘p3_2’+(d==3)*‘p3_3’

* FIND PRODUCT OF TYPE-CONDITIONAL DENSITIES FOR EACH SUBJECT:

by i: replace ‘pp1’=exp(sum(ln(max(‘p1’,1e-12))))

by i: replace ‘pp2’=exp(sum(ln(max(‘p2’,1e-12))))

by i: replace ‘pp3’=exp(sum(ln(max(‘p3’,1e-12))))

* COMBINE TYPE-CONDITIONAL DENSITIES TO OBTAIN MARGINAL DENSITY FOR EACH SUBJECT

* (ONLY REQUIRED IN FINAL ROW FOR EACH SUBJECT):

replace ‘pp’=‘p_rec’*‘pp1’+‘p_str’*‘pp2’+(1-‘p_rec’-‘p_str’)*‘pp3’

replace ‘pp’=. if last~=1

* SPECIFY (LOG-LIKELIHOOD) FUNCTION WHOSE SUM OVER SUBJECTS IS TO BE MAXIMISED

mlsum ‘lnpp’=ln(‘pp’) if last==1

* GENERATE POSTERIOR TYPE PROBABILITIES, AND MAKE THESE AVAILABLE OUTSIDE THE PROGRAM

replace postp1=‘p_rec’*‘pp1’/‘pp’

replace postp2=‘p_str’*‘pp2’/‘pp’

replace postp3=(1-‘p_rec’-‘p_str’)*‘pp3’/‘pp’

putmata postp1, replace

putmata postp2, replace

putmata postp3, replace

}

end

* END OF LOG-LIKELIHOOD EVALUATION PROGRAM

clear

set more off

* READ DATA

use "bardsley"

by i: gen last=_n==_N

gen int d=1

replace d=2 if y>0

replace d=3 if y==10

gen double ord_1=ord-1
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gen double tsk_1=tsk-1

* SET MEDIAN OF PREVIOUS CONTRIBUTIONS TO 8 FOR SUBJECTS IN FIRST POSITION:

replace med=8 if ord==1

* SPECIFY EXPLANATORY-VARIABLE LISTS FOR RECIPROCATOR (LIST1)

* AND STRATEGIST (LIST2) EQUATIONS:

local list1 "med tsk_1"

local list2 "ord_1 tsk_1"

* INITIALISE VARIABLES TO BE USED FOR POSTERIOR TYPE PROBABILITIES:

gen postp1=.

gen postp2=.

gen postp3=.

* SPECIFY STARTING VALUES:

mat start=(0.57,-0.10,6.1,-0.93,-0.05,5.2,3.3,3.7,0.11,-0.05,0.26,0.49)

* SPECIFY LIKELIHOOD EVALUATOR, PROGRAM, AND PARAMETER NAMES:

ml model d0 pg_mixture (=‘list1’) (=‘list2’) /sig1 /sig2 /w0 /w1 /p1 /p2

ml init start, copy

* USE ML COMMAND TO MAXIMISE LOG-LIKELIHOOD, AND STORE RESULTS AS "WITH_TREMBLE":

ml max, trace search(norescale)

est store with_tremble

* COMPUTE THIRD MIXING PROPORTION USING DELTA METHOD:

nlcom p3: 1-[p1]_b[_cons]-[p2]_b[_cons]

* EXTRACT POSTERIOR TYPE PROBABILITIES AND PLOT THEM AGAINST

* NUMBER OF ZERO CONTRIBUTIONS:

drop postp1 postp2 postp3

getmata postp1

getmata postp2

getmata postp3

label variable postp1 "rec"

label variable postp2 "str"

label variable postp3 "fr"

by i: gen n_zero=sum(y==0)

scatter postp1 postp2 postp3 n_zero if last==1, title("with tremble") ///

ytitle("posterior probability") msymbol(x Dh Sh) jitter(3) saving(with, replace)

* ESTIMATE MODEL WITHOUT TREMBLE, AND STORE RESULTS AS "WITHOUT_TREMBLE":

constraint 1 [w0]_b[_cons]=0.00

constraint 2 [w1]_b[_cons]=0.00

ml model d0 pg_mixture (=‘list1’) (=‘list2’) ///

/sig1 /sig2 /w0 /w1 /p1 /p2, constraints(1 2)

ml init start, copy

ml max, trace search(norescale)

est store without_tremble

nlcom p3: 1-[p1]_b[_cons]-[p2]_b[_cons]

* EXTRACT AND PLOT POSTERIOR TYPE PROBABILITIES FOR MODEL WITHOUT TREMBLE:

drop postp1 postp2 postp3

getmata postp1

getmata postp2

getmata postp3
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label variable postp1 "rec"

label variable postp2 "str"

label variable postp3 "fr"

scatter postp1 postp2 postp3 n_zero if last==1, title("without tremble") ///

ytitle("posterior probability") msymbol(x Dh Sh) jitter(3) saving(without, replace)

* CARRY OUT LIKELIHOOD RATIO TEST FOR PRESENCE OF TREMBLE:

lrtest with_tremble without_tremble

* COMBINE THE TWO POSTERIOR PROBABILITY PLOTS

gr combine with.gph without.gph

The model is estimated twice, first with all parameters unconstrained, and second
with the two tremble parameters constrained to zero. Note that all that is required
for this is to define the two constraints using the “constraint” command, and then
to include the constraints(.) option with the “ml” command.

The STATA output from the first estimation (the model with tremble) is as follows:

Number of obs = 1960

Wald chi2(2) = 108.07

Log likelihood = -3267.6884 Prob > chi2 = 0.0000

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

eq1 |

med | .598677 .0611812 9.79 0.000 .4787641 .7185899

tsk_1 | -.0961739 .0202229 -4.76 0.000 -.13581 -.0565379

_cons | 4.004374 .4541832 8.82 0.000 3.114192 4.894557

-------------+----------------------------------------------------------------

eq2 |

ord_1 | -.9644643 .0823741 -11.71 0.000 -1.125915 -.803014

tsk_1 | -.0516766 .017189 -3.01 0.003 -.0853664 -.0179867

_cons | 5.299353 .3828498 13.84 0.000 4.548981 6.049724

-------------+----------------------------------------------------------------

sig1 |

_cons | 3.442241 .1674649 20.56 0.000 3.114016 3.770466

-------------+----------------------------------------------------------------

sig2 |

_cons | 3.705603 .1611296 23.00 0.000 3.389794 4.021411

-------------+----------------------------------------------------------------

w0 |

_cons | .104174 .0321192 3.24 0.001 .0412216 .1671265

-------------+----------------------------------------------------------------

w1 |

_cons | -.0492262 .0218191 -2.26 0.024 -.0919909 -.0064614

-------------+----------------------------------------------------------------

p1 |

_cons | .2710853 .048467 5.59 0.000 .1760918 .3660788

-------------+----------------------------------------------------------------

p2 |

_cons | .4832814 .0538021 8.98 0.000 .3778311 .5887316

------------------------------------------------------------------------------

------------------------------------------------------------------------------

| Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------

p3 | .2456333 .0436144 5.63 0.000 .1601506 .331116

------------------------------------------------------------------------------

As recommended by Moffatt & Peters (2001), the Likelihood Ratio test has been
used to test for the presence of a tremble. Results from the likelihood ratio test
comparing the above model with the tremble-free model are as follows. The p-value
of 0.0000 represents overwhelming evidence of the presence of a tremble.
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. lrtest with_tremble without_tremble

Likelihood-ratio test LR chi2(2) = 149.89

(Assumption: without_trem~e nested in with_tremble) Prob > chi2 = 0.0000

Results from both models are presented and discussed in the next section.

5.5.6 Results

The parameter estimates from the finite mixture 2-limit tobit model, with and with-
out tremble, are shown in table 6. The first column contains results from the full
model. The second column shows the results of the model with no tremble. As
noted at the end of the last section, the likelihood ratio test provided overwhelming
evidence of the presence of a tremble in this data set, implying that the full model
is superior. The importance of including the tremble is also clearly seen by observ-
ing how different the estimates are, in particular the mixing proportions, when the
tremble is absent. For example, in the absence of a tremble, the proportion of free
riders is estimated to be 0.143 which is exactly equal to the proportion of subjects
who donated zero on every occasion (see section 5.5.3); as mentioned previously,
the presence of the tremble allows the set of free-riders to include subjects who do-
nated zero on nearly all occasions, and accordingly, the estimate of the proportion
of free-riders rises to 0.246, which is remarkably close to the proportion of subjects
non-parametrically identified as free riders in Section 5.5.3, on the grounds that they
contributed zero in at least 16 out of 20 tasks. This estimate of 24.6% is also in
close agreement with previous estimates appearing elsewhere in the literature.
The two equations set out in (77) are estimated as:

Reciprocators : E(y∗|MED,TSK) = 4.004 + 0.599MED − 0.096(TSK − 1)
(84a)

Strategists : E(y∗|ORD, TSK) = 5.299− 0.964(ORD − 1)− 0.052(TSK − 1)
(84b)

As seen in table 6, all coefficients are strongly significant. For reciprocators, as
expected, the median of previous contributions has a significantly positive effect on
the current contribution: if all previous contributions were raised by one unit, we
would expect the current contribution to rise by around three-fifths of one unit, but
by significantly less than one whole unit. This result is consistent with the biased
reciprocity observed in Fischbacher et al. (2001) (biased in the sense that subjects,
although influenced positively by the contributions of others, tend to donate less
than the levels contributed by others). This bias, which we have identified using a
one-shot sequential play game, may be partly responsible for the usually-observed
decay of contributions in the more usual environment of simultaneous play, repeated
game experiments.

For strategists, again as expected, the effect of the subjects’ order in the sequence
is negative. In particular, the “expected” contribution of a strategist first-mover
(in task 1) is 5.3, while the same strategist in last position (ORD = 7) would be
expected to contribute zero - a highly reassuring result, since as we noted earlier
there is no selfish contribution motive for a subject in last position. In contrast,
reciprocators are never expected to contribute zero.
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The effect of TSK is significantly negative for both types, simply implying a diminu-
tion of contributions with experience. If this is interpreted as the effect of learning
about the incentive structure of the game, it seems that reciprocators learn about
such matters somewhat faster than strategists.

The tremble probability is 0.104 at the start of the experiment (task 1), but, in
accordance with the significant negative estimate of ω1, decays to 0.041 by the end
(task 20). This dramatic decay of the tremble amounts to further evidence of learn-
ing (Moffatt & Peters 2001, Loomes et al. 2002).

Turning to the estimates of the mixing proportions, we see that very close to 25%
of the population are free riders; around 25% are reciprocators; the remaining 50%
are strategists.
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full model no tremble
Reciprocators
constant 4.004(0.454) 3.166(0.358)
MED 0.599(0.061) 0.490(0.045)
TSK-1 −0.096(0.020) −0.061(0.015)
σ1 3.442(0.167) 3.577(0.126)

Strategists
constant 5.299(0.382) 4.493(0.518)
ORD-1 -0.964(0.082) -1.128(0.102)
TSK-1 -0.052(0.017) -0.080(0.023)
σ2 3.706(0.161) 5.104(0.253)

Tremble
ω0 0.104(0.032) -
ω1 -0.049(0.022) -

Mixing proportions
prec 0.271(0.048) 0.382(0.051)
pstr 0.483(0.054) 0.472(0.053)
pfr 0.246(0.044) 0.143(0.035)

n 98 98
T 20 20
k 12 10

LogL -3267.69 -3342.63

AIC 3.35 3.42

Table 6: Maximum Likelihood estimates from mixture model applied to Bardsley
(2000)’s data, with and without tremble. Asymptotic standard errors in parentheses.
The estimate and standard error of pfr is deduced from the estimates of prec and
pstr using the delta method. When ORD=1, MED is set to 8 for the purpose of
estimation. AIC is Akaike’s Information Criterion, defined as 2(−LogL + k)/(nT ),
where k is the number of parameters in the model. The preferred model is the one
with the lower AIC.

5.5.7 Posterior Type Probabilities

The three posterior type probabilities are given by:

P (i = rec|yi1, ..., yiT ) =
prec

∏T
t=1 P (yit = 0|rec)Iyit=0f(yit|rec)I0<yit<10P (yit = 10|rec)Iyit=10

Li

P (i = str|yi1, ..., yiT ) =
pstr
∏T

t=1 P (yit = 0|str)Iyit=0f(yit|str)I0<yit<10P (yit = 10|str)Iyit=10

Li

P (i = fr|yi1, ..., yiT ) =
pfr
∏T

t=1 P (yit = 0|fr)Iyit=0f(yit|fr)I0<yit<10P (yit = 10|fr)Iyit=10

Li
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where Li is the likelihood contribution for subject i, defined in (81). These posterior
probabilities are computed (as postp1-postp3) at the end of the program.

In Figure 23, we plot the three posterior probabilities, obtained from estimation of
both models, against the number of zero contributions made by the subject. Com-
paring the two plots, we see once again that the main difference between the two
models is in the classification of subjects to the “free rider” type. For the tremble-free
model (right-hand plot), only subjects contributing zero in all 20 tasks are classified
as “free-rider”. For the model with tremble however (left-hand plot), all subjects
who contributed zero in 16 or more tasks are seen to be very likely to be free-riders.
Further inspection of the left-hand plot reveals that subjects who contribute zero in
a moderate number of tasks (6-14) tend to be strategists, while subjects who rarely
contribute zero appear to be a mixture of strategists and reciprocators. Note finally
that there few points in the scatter are far from zero or one on the vertical axis,
indicating that it is only for a small number of subjects that the model is incapable
of detecting type with confidence.

Figure 24: jittered scatter of posterior type probabilities against number of zero
contributions from model with tremble (left-hand graph) and from model without
tremble (right-hand graph)
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