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A Price Taking Firm :

e Maximize Profit vs. Minimize Cost

e Cost Function (the Minimized Cost):
e Input Price Change (Revealed Preference)
e Normal Input (Input Price Effect on MC)
e Convex Cost Function (Revealed Preference)

e Profit Function (The Maximized Profit):
e First Laws of Supply (Revealed Preference)
e First Laws of Input Demand (Revealed Preference)
e Convex Profit Function (Revealed Preference)

e LR vs. SR: Le Chatelier’s Principle (RP too!)




Producer vs. Consumer

o Profit

e Profit Maximation
e Cost

e Cost Function

e Profit Function

e Input Price Change

e First Laws of Supply
and Input Demand
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Why do we care about this?

e Suppose you decide to run a small business...
e You face a changing environment
e And make various business choices everyday

e Aren’t you just another “consumer” in the
economy maximizing “utility”?
Profit maximization similar to utility maximization?
e What will your actions tell us about your choices?
How general can revealed preference be?

e Are these convincing?




Dual of Maximizing Profit:
Minimizing Cost

e Production Plan (z,q) € 7/ q = F(z)
e Input z Input Prices r
e Cost Function C(r,q) = min {r-zl(z,q) €7}

Single output: C(r,q) =min{r - z|F(z) —q >0}

e Lemma: Gradient of the Cost Function
If cost minimizing z(q,r) is continuous over r,

Then, ¢

(r,q) = z;(r,q) fori=1,--- ,n.
87“7;




Lemma: Input Price Change
(Gradient of the Cost Function)

Proof: C(r%,q) =r" 2" <% .21

Clri,q)=r' 2t <prt. 2"
0

0

Since input vector z° is optimal for input price r

1 1

is optimal for input price r
C(rl,q) = C(r%q) < (r' —1%) - 27,
C(r 1,Q) —C( Y q) > (7“1 — )z
Suppose 7! — 0, -+ ,rf —7rd, -+ ,0)
L
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Lemma: Input Price Change
(Gradient of the Cost Function)

e Hence we have oC
(97“7;
e Note: Only Revealed Preferences + continuity

(Tv Q) — Zi(ra Q)

oM

= z°(p, U"
apj ( )




Proposition 4.2-1: Effect of
Input Price Change on MC

e Consider the effect on MC:

2 :
iMCi:E?C:aaC:azj
or; or;0q;  O0q; Or;  Og;

e Hence, a rise Iin price of input | raises MC of
output I Iff input | iIs a normal input
® 82M 8335

® Op;Op; - Ip;
e Example: Quasi-linear Production




Proposition 4.2-2
Convex Cost Function

e |f the production set is convex, then the cost
function is a convex function of outputs.

i.e. For any ¢", ¢!,

C(g*,r) < (1—=XNC(q",r) + XC(g",7)




Proposition 4.2-2
Convex Cost Function

Proof: z5 ~ ¢, 21 ~ ¢,
C(®r)=r-2"<r. 2,
C(qt,r)=r-2! <r.z?

Since C'(q,r) minimizes cost.

Hence,
o )\)C(QO, T) T )\C(qla T)
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Profit Function

e Production Plan: yf — (y{7 T aﬁ%’é)

e Net output: y;f > (0 Net input: yj.c <0

o Profit:p-y = Z Pi-Yi — Z pj - (—¥;)
Z;yz>0 jayj<0
N———

revenue cost

e Profit Function (Maximized Profit):
[(p) = max{p-yly € 7/}
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Proposition 4.2-3: Price Change
Effect on Inputs and Outputs

e Consider the producer problem
[(p) = max{p-yly € 7/}
Let 4" be profit maximizing for prices p"
y! be profit maximizing for prices p!

= Ap-Ay = (p' —p°) - (y' —¢°) >0

12




Proposition 4.2-3: Price Change
Effect on Inputs and Outputs

Proot:

P’y =p’ -y, ploy >ptey

Since y' is profit maximizing for prices p’

y! is profit maximizing for prices p'

"y —y") >0, p-(y —y") >0

= Ap-Ay=(p' —p°) - (y' —¢") >0
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Corollary: First Laws of Supply
and Input Demand

e This Is true for any pair of price vectors

e SO, If only the price of commodity | changes,
Apj - Ay; 20

e First Law of Supply:

A1y
For output y; > 0, we have I > 0
Ap;

e First Law of Input Demand:

For mput y; < 0, we have Ji <0
Ap;
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Proposition 4.2-4 HE

Convex Profit Function e

e The profit function Is convex.

i.e. For any p", p!,
M(p*) < (1= MII(p”) + ALL(p')

e (Compare: Concave Expenditure Function.)

e This Is stronger than Prop. 4.2-3...

e Note similar relation between 2.3-1 & 2.3-2

e |s the Indirect Utility Function (quasi-)convex?
e Yes! See Jehle & Reny (2001), p.28,Thm 1.6




Proposition 4.2-4
Convex Profit Function

Proof: y>‘ profit maximizing at py,
(p°) = p* - y° > p° -y,
[I(p') =p*-y' >p' -y
Since 1I(p) maximizes profit.

Hence,
(1 — MIL(p°) + AI(p*)
> [ =N -yM)] + [Ap" - yY)]
p* -yt =10(p*)
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Application: SR vs. LR
Adjustment to Price Change

e Firm face price p°, choose production plan 3"
e One (input or output) price changes p’ = p'

e Assume firm’s feasible set more limited in SR
o Set of feasible LR plans: 7/
» Set of feasible SR plans: v° (") C ~

e Le Chatelier Principle: Own price effects are
larger in the LR than in the SR. I.e.

, S
ayz > ayz
Op; — Op;
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Proposition 4.2-5:

Le Chatelier Principle

e LR Profit Function: I1(p)

e SR Profit Function: 11§ (p) < L

(p) for p # p”

I1(p”)
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Proposition 4.2-5:

Le Chatelier Principle

Proof: H(po) — po ' y(PO) > po ' y(Pl)a
M(p') =p'-y(p') =p" - y®"),

p*)
I(p') — L(p") < (p' = p°) - y(p"),
p') —(p°) > (p* — p°) - y(p°)
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Proposition 4.2-5:
Le Chatelier Principle

e Hence, ol i () 0’1l Oy,
Op; Y ap? Ip;

Similarly, OII5 o115 Oyy
* Yo 220 — S(p), 0 =

op; apzz B Op;
S
e Since, g—g = %1;? at p' and II(p) > II5 (p)

e Hence, oy, 0°11 _ %l Oy

Op;  Op? — Op?  Op;
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What Have We Learned? e

e Cost Function (the Minimized Cost):
e Input Price Change (Revealed Preference)
e Normal Input (Input Price Effect on MC)
e Convex Cost Function (Revealed Preference)

e Profit Function (The Maximized Profit):
e First Laws of Supply (Revealed Preference)
e First Laws of Input Demand (Revealed Preference)
e Convex Profit Function (Revealed Preference)

e LR vs. SR: Le Chatelier’s Principle (RP too!)
e Homework: Exercise 4.2-1~7
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What Have We Learned? e

e Cost Function vs. Profit Function

Method of “Revealed Preferences” used in:
nput Price Change

—irst Laws of Supply

-irst Laws of Input Demand

Cost and Profit Functions are Convex

Le Chatelier Principle

a bk~ 0 b &
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Producer vs. Consumer

o Profit

e Profit Maximation
e Cost

e Cost Function

e Profit Function

e Input Price Change

e First Laws of Supply
and Input Demand
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Demand
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