General Equilibrium for the Exchange Economy

Joseph Tao-yi Wang
2008/11/21

(Lecture 9, Micro Theory I)
What We Learned from the 2x2 Economy?

- **Pareto Efficient Allocation (PEA)**
 - Cannot make one better off without hurting others
- **Walrasian Equilibrium (WE)**
 - When Supply Meets Demand
 - Focus on Exchange Economy First
- **1st Welfare Theorem**: WE is Efficient
- **2nd Welfare Theorem**: Any PEA can be supported as a WE
- **These also apply to the general case as well!**
General Exchange Economy

- **n Commodities**: 1, 2, ..., n
- **H Consumers**: $h = 1, 2, \ldots, H$
 - Consumption Set: $X^h \subset \mathbb{R}^n$
 - Endowment: $\omega^h = (\omega_1^h, \ldots, \omega_n^h) \in X^h$
 - Consumption Vector: $x^h = (x_1^h, \ldots, x_n^h) \in X^h$
 - Utility Function: $U^h(x^h) = U^h(x_1^h, \ldots, x_n^h)$
 - Aggregate Consumption and Endowment:
 \[x = \sum_{h=1}^{H} x^h \text{ and } \omega = \sum_{h=1}^{H} \omega^h \]
- **Edgeworth Cube (Hyperbox)**)
Feasible Allocation

- A allocation is feasible if
- The sum of all consumers’ demand doesn’t exceed aggregate endowment: \(x - \omega \leq 0 \)
- A feasible allocation \(\bar{x} \) is Pareto efficient if
- there is no other feasible allocation \(x \) that is
 - strictly preferred by at least one: \(U^i(x^i) > U^i(\bar{x}^i) \)
 - and is weakly preferred by all: \(U^h(x^h) \geq U^h(\bar{x}^h) \)
Walrasian Equilibrium

- **Price-taking:** Prices $p \geq 0$
- **Consumers:** $h=1, 2, \ldots, H$
 - **Endowment:** $\omega^h = (\omega_1^h, \ldots, \omega_n^h)$ \quad $\omega = \sum_h \omega^h$
 - **Wealth:** $W^h = p \cdot \omega^h$
 - **Budget Set:** $\{x^h \in X^h \mid p \cdot x^h \leq W^h\}$
 - **Consumption Set:** $\bar{x}^h = (\bar{x}_1^h, \ldots, \bar{x}_n^h) \in X^h$
- **Most Preferred Consumption:**
 \[U^h(\bar{x}^h) \geq U^h(x^h) \text{ for all } x^h \text{ such that } p \cdot x^h \leq W^h \]
- **Vector of Excess Demand:** $\bar{e} = \bar{x} - \omega$
Definition: Walrasian Equilibrium Prices

- The price vector $p \geq 0$ is a Walrasian Equilibrium price vector if
- there is no market in excess demand ($\bar{e} \leq 0$),
- and $p_j = 0$ for any market that is in excess supply ($\bar{e}_j < 0$).

- We are now ready to state and prove the “Adam Smith Theorem” (WE \Rightarrow PEA)…
Proposition 3.2-1: First Welfare Theorem

- If preferences of each consumer satisfies LNS, then the Walrasian Equilibrium allocation is Pareto efficient.

- Proof:
 1. Since \(U^h(x^h) > U^h(\bar{x}^h) \) \(\Rightarrow p \cdot x^h > p \cdot \omega^h \)
 2. By LNS, \(U^h(x^h) \geq U^h(\bar{x}^h) \) \(\Rightarrow p \cdot x^h \geq p \cdot \omega^h \)
 3. Then, \(\sum_{h} (p \cdot x^h - p \cdot \omega^h) = p \cdot (x - \omega) > 0 \)

- Which is not feasible \((x - \omega > 0) \), since \(p \geq 0 \)
First Welfare Theorem: \(WE \rightarrow PE \)

1. Why \(U^h(x^h) > U^h(x^h) \Rightarrow p \cdot x^h > p \cdot \omega^h \)?

 \(x^h \) solves \(\max \{ U^h(x^h) \mid p \cdot x^h \leq p \cdot \omega^h \} \)

2. Why \(U^h(x^h) \geq U^h(x^h) \Rightarrow p \cdot x^h \geq p \cdot \omega^h \)?
 - Suppose not, then \(p \cdot x^h < p \cdot x^h \)
 - All bundles in sufficiently small neighborhood of \(x^h \) is in budget set \(\{ x^h \in X^h \mid p \cdot x^h \leq W^h \} \)
 - LNS requires a \(\hat{x}^h \) in this neighborhood to have \(U^h(\hat{x}^h) > U^h(x^h) \), a contradiction.
Lemma 3.2-2: Quasi-concavity of V

- If $U^h, h = 1, \cdots, H$ is quasi-concave,
- Then so is the indirect utility function

\[V^i(x) = \max_{x^h} \left\{ U^i(x^i) \left| \sum_{h=1}^{H} x^h \leq x, \right. \right\} \]

\[U^h(x^h) \geq U^h(\hat{x}^h), h \neq i \]
Lemma 3.2-2: Quasi-concavity of V

- Proof: Consider $V^i(b) \geq V^i(a)$, for any $c = (1 - \lambda)a + \lambda b$, need to show $V^i(c) \geq V^i(a)$

 Assume $\{a^h\}_{h=1}^H$ solves $V^i(a)$, $\{b^h\}_{h=1}^H$ solves $V^i(b)$, $\{c^h\}_{h=1}^H$ is feasible since $c^h = (1 - \lambda)a^h + \lambda b^h$

 $\Rightarrow V^i(c) \geq U^i(c^i)$

 Now we only need to prove $U^i(c^i) \geq V^i(a)$.
Lemma 3.2-2: Quasi-concavity of V

- Since $\{a^h\}_{h=1}^H$ solves $V^i(a)$, $\{b^h\}_{h=1}^H$ solves $V^i(b)$, $U^i(a^i) = V^i(a)$ and $U^i(b^i) = V^i(b) \geq V^i(a)$
- $\Rightarrow U^i(c^i) \geq V^i(a)$ by quasi-concavity of U^i
- $\Rightarrow V^i(c) \geq U^i(c^i) \geq V^i(a)$

- Note: (By quasi-concavity of U^h) $U^h(a^h) \geq U^h(\hat{x}^h)$ for all $h \neq i$ $\Rightarrow U^h(c^h) \geq U^h(\hat{x}^h)$
- $U^h(b^h) \geq U^h(\hat{x}^h)$ for all $h \neq i$
Proposition 3.2-3: Second Welfare Theorem

- Suppose $X^h = \mathbb{R}_+^n$, and utility functions $U^h(.)$
- continuous, quasi-concave, strictly monotonic.
- If $\{\hat{x}^h\}_{h=1}^H$ is Pareto efficient, then there exist a price vector $p \geq 0$ such that
 $$U^h(x^h) > U^h(\hat{x}^h) \implies p \cdot x^h > p \cdot \hat{x}^h$$
- Proof:
Proposition 3.2-3: Second Welfare Theorem

- Proof: Assume nobody has zero allocation
 - Relaxing this is easily done…
- By Lemma 3.2-2, \(V^i(x) \) is quasi-concave
- \(V^i(x) \) is strictly increasing since \(U^i(\cdot) \) is also
 - (and any increment could be given to consumer \(i \))
- Since \(\{\hat{x}^h\}_{h=1}^H \) is Pareto efficient, \(V^i(\omega) = U^i(\hat{x}^i) \)
- Since \(U^i(\cdot) \) is strictly increasing,

\[
\sum_{h=1}^H \hat{x}^h = \omega
\]
Proposition 3.2-3: Second Welfare Theorem

- Proof (Continued):
- Since ω is on the boundary of $\{x | V^i(x) \geq V^i(\omega)\}$
- By the Supporting Hyperplane Theorem, there exists a vector $p \neq 0$ such that
 $$V^i(x) > V^i(\omega) \Rightarrow p \cdot x > p \cdot \omega$$
 and $V^i(x) \geq V^i(\omega) \Rightarrow p \cdot x \geq p \cdot \omega$

- Claim: $p > 0$, then,
 $$U^h(x^h) \geq U^h(\hat{x}^h) \Rightarrow p \cdot \sum_{h=1}^{H} x^h \geq p \cdot \omega = p \cdot \sum_{h=1}^{H} \hat{x}^h$$
Proposition 3.2-3: Second Welfare Theorem

- Proof (Continued):
- Why \(p > 0 \)? If not, define \(\delta = (\delta_1, \cdots, \delta_n) > 0 \) such that \(\delta_j > 0 \) iff \(p_j < 0 \) (others = 0)
- Then, \(V^i(\omega + \delta) > V^i(\omega) \) and \(p \cdot (\omega + \delta) < p \cdot \omega \)
- Contradicting (result from the Supporting Hyperplane Theorem)

\[
U^h(x^h) \geq U^h(\hat{x}^h) \Rightarrow p \cdot \sum_{h=1}^{H} x^h \geq p \cdot \omega
\]
Proposition 3.2-3: Second Welfare Theorem

- Since $U^h(x^h) \geq U^h(\hat{x}^h) \Rightarrow p \cdot \sum_{h=1}^{H} x^h \geq p \cdot \sum_{h=1}^{H} \hat{x}^h$

- Set $x^k = \hat{x}^k, \ k \neq h$, then for consumer h

 $U^h(x^h) \geq U^h(\hat{x}^h) \Rightarrow p \cdot x^h \geq p \cdot \hat{x}^h$

- Need to show strict inequality implies strict…

- If not, then $U^h(x^h) > U^h(\hat{x}^h) \Rightarrow p \cdot x^h = p \cdot \hat{x}^h$

- Hence, $p \cdot \lambda x^h < p \cdot \hat{x}^h$ for all $\lambda \in (0, 1)$

- U^h continuous $\Rightarrow U^h(\lambda x^h) > U^h(\hat{x}^h)$ for large λ

- Contradiction!
Summary of 3.2

- Pareto Efficiency:
 - Cannot make one better off without hurting others
- Walrasian Equilibrium: market clearing prices
- Welfare Theorems:
 - First: Walrasian Equilibrium is Pareto Efficient
 - Second: Pareto Efficient allocations can be supported as Walrasian Equilibria (with transfer)
- Homework: Read “Thinking Outside the Box”
 http://essentialmicroeconomics.com/08R3/OutsideTheBox.pdf
- Do Exercise 3.2-1~3