Aversion to Risk

Joseph Tao-yi Wang 2008/12/26

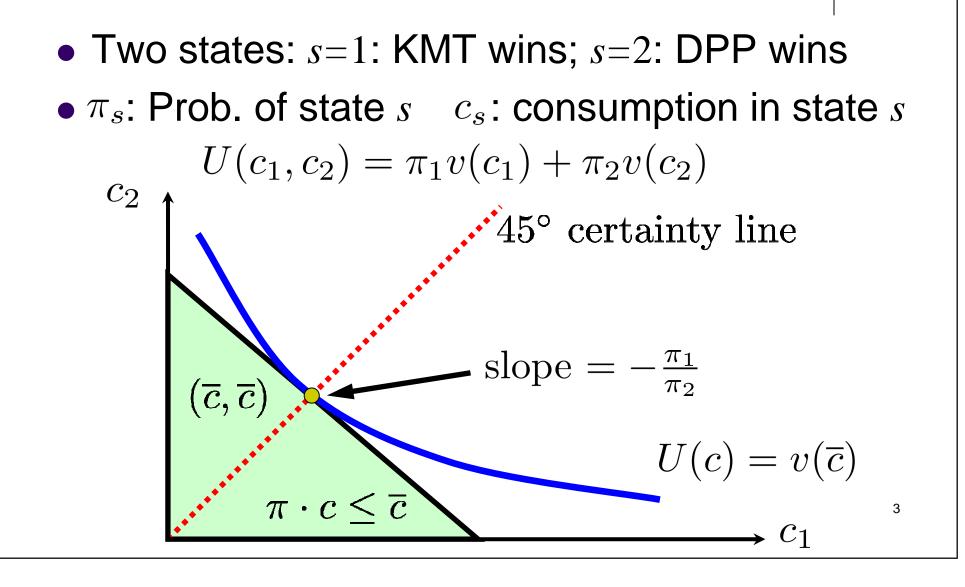
(Lecture 16, Micro Theory I)

1

Dealing with Uncertainty

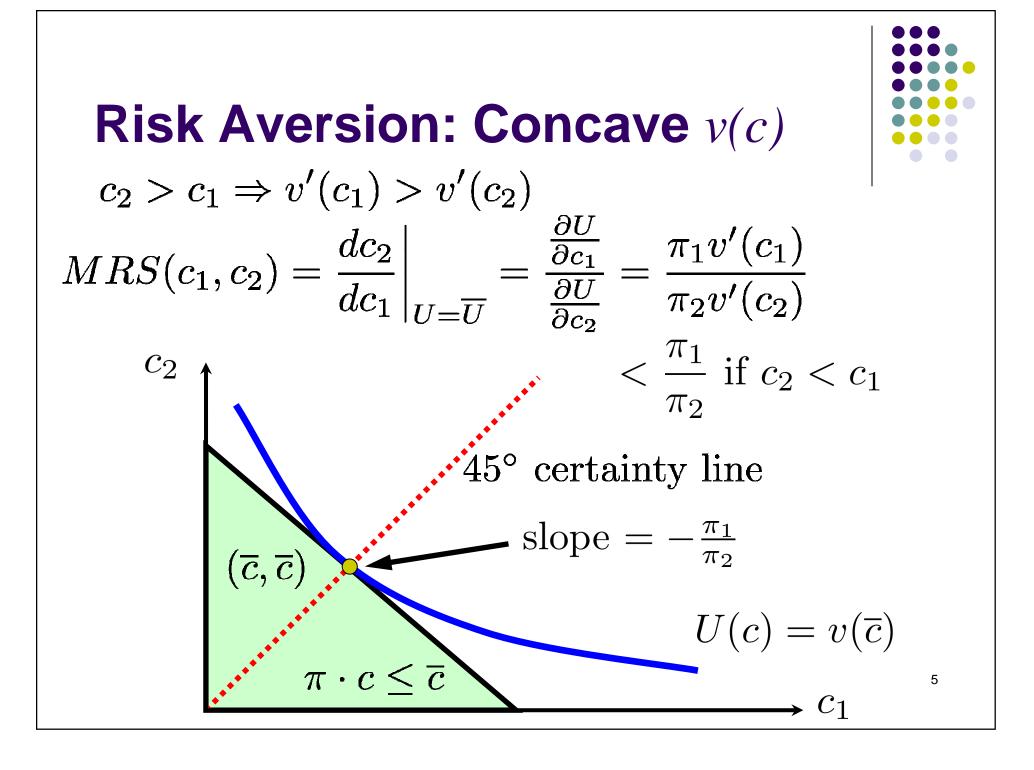
- Preferences over risky choices (Section 7.1)
- One simple model: Expected Utility $U(c_1, c_2) = \pi_1 v(c_1) + \pi_2 v(c_2)$
- How can old tools be applied to analyze this?
- How is "risk aversion" measured?
- What about differences in risk aversion?
- How does a risk averse person trade state claims? (Wealth effects? Individual diff.?)

Dealing with Uncertainty



Risk Aversion: Concave v(c)

• Upper contour sets of U(.) is convex $U(c_1, c_2) = \pi_1 v(c_1) + (1 - \pi_1) v(c_2) \le v(\overline{c})$ Prefers certain bundle to risky ones with same EV c_2 [•]45° certainty line slope = $-\frac{\pi_1}{\pi_2}$ $(\overline{c},\overline{c})$ $U(c) = v(\overline{c})$



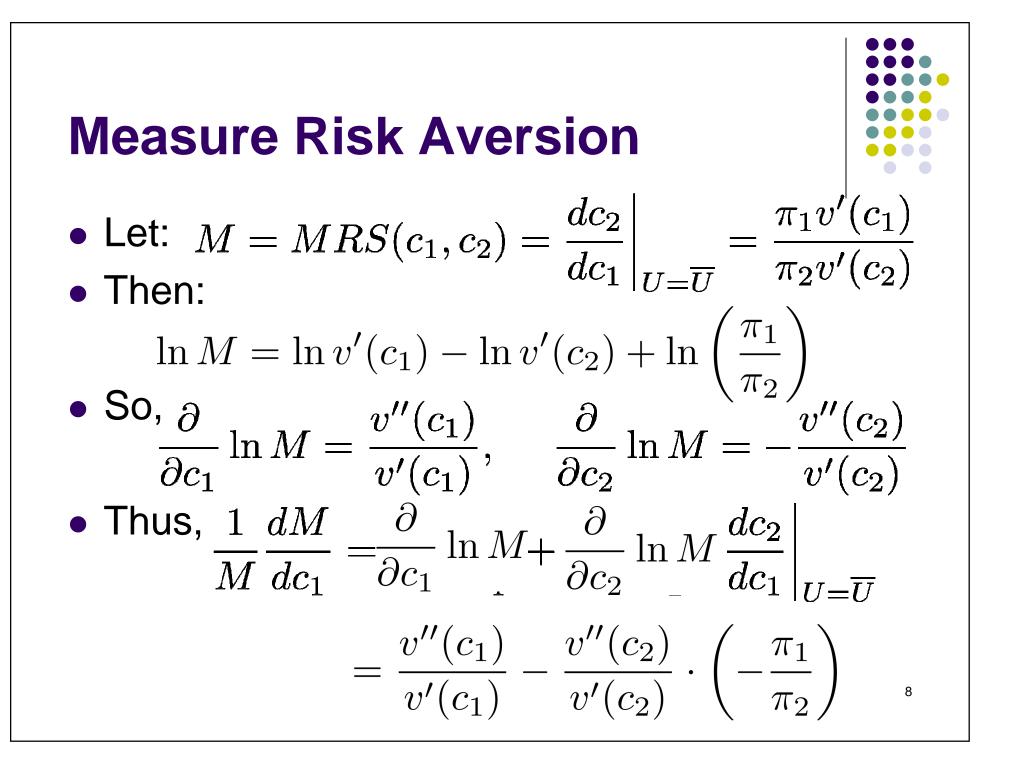
Extremely Risk Loving: Convex *v*(*c*)

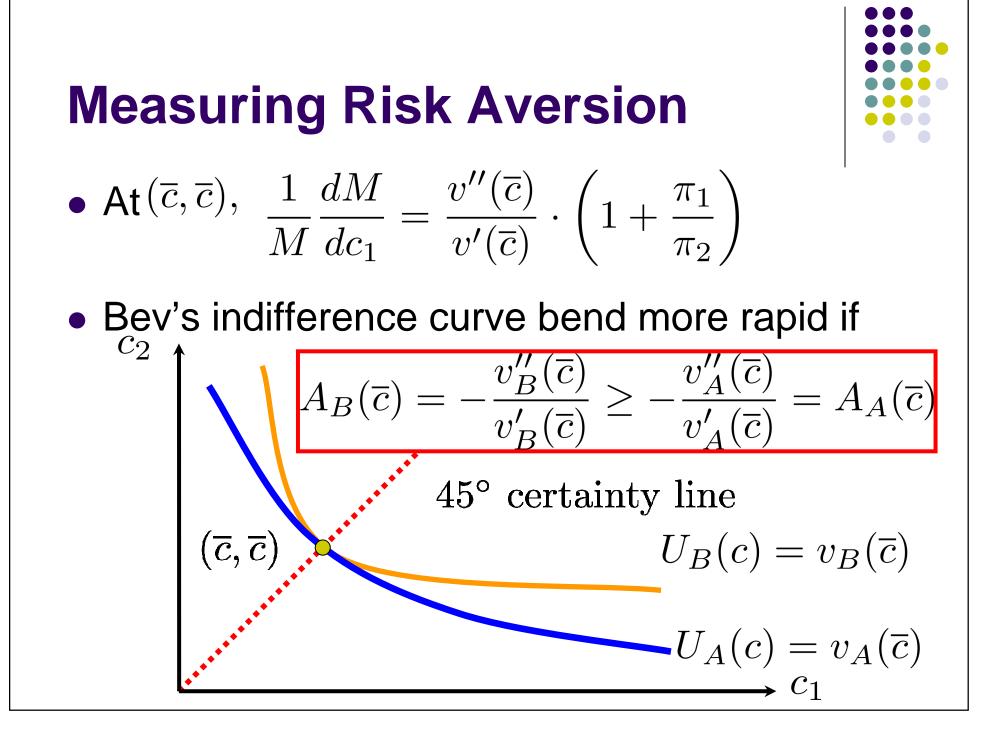
• Upper contour sets of U(.) is convex $U(c_1, c_2) = \pi_1 v(c_1) + (1 - \pi_1) v(c_2) \ge v(\overline{c})$ Prefers most risky bundles (weird!) c_2 45° certainty line $(\overline{c},\overline{c})$ $U(c) = v(\overline{c})$ $\pi \cdot c < \overline{c}$

6

Jensen's Inequality

- For any probability vector π and consumption vector c, if v(c) is concave, then $\sum_{s=1}^{S} \pi_s v(c_s) \le v(\overline{c}) \text{ where } \overline{c} = \sum_{s=1}^{S} \pi_s c_s$
- Proof:
- Easy if v(c) is continuously differentiable, since Concavity implies $v(c_s) \le v(\overline{c}) + v'(\overline{c})(c_s - \overline{c})$
- Weighted average yields the inequality. QED.





Measuring Risk Aversion

- Absolute Risk Aversion $A(c) = -\frac{v''(\overline{c})}{v'(\overline{c})}$
- Relative Risk Aversion $R(c) = -\frac{cv''(\overline{c})}{v'(\overline{c})}$
- Indifference curve bend more rapid if A(c) high
- Can also obtain:
- A(c) higher \rightarrow acceptable gambles set smaller
 - But need to first establish the relationship between two people's (risk averse) utility functions...

Proposition 7.2-1: Differences in Risk Aversion

- Two (von Neumann-Morgenstern) expected utility functions: v_A, v_B
- Then $A_B(c) = -\frac{v_B''(c)}{v_B'(c)} \ge -\frac{v_A''(c)}{v_A'(c)} = A_A(c)$
- iff the mapping $f(\cdot): v_A \to v_B$ is concave.
- Proof:

Proposition 7.2-2:Risk Aversion & the Set of Acceptable Gambles

• If
$$A_B(c) = -\frac{v_B''(c)}{v_B'(c)} \ge -\frac{v_A''(c)}{v_A'(c)} = A_A(c)$$

- and both start with the same wealth \overline{c} . Then,
- The set of acceptable gambles to *B* is a subset of the set of gambles acceptable to *A*.
- Proof:

Trading in State Claim Markets

- y_s : Endowment in state s, $y_1 > y_2$
- p_s : current price of unit consumption in state s
- Budget Constraint: $p_1c_1 + p_2c_2 = p_1y_1 + p_2y_2$

 (c_1^*, c_2^*)

^{45°} certainty line (Here: Partial insurance

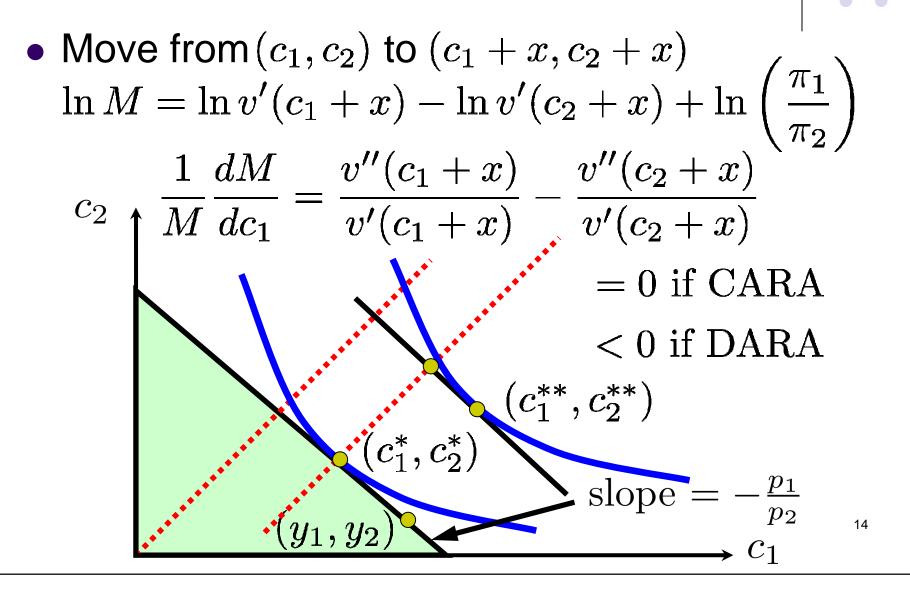
against a DDP victory)

Could	ha	ave	fully
insure	if	$rac{p_1}{p_2}$	$= \frac{\pi_1}{\pi_2}$

13

slope

Wealth[↑], how would riskiness of optimal choice change?



Would a more risk averse person invest less risky?

• Yes...

Summary of 7.2

• Homework: Exercise 7.2-1~8

