Games of Incomplete Information (資訊不全賽局)

Joseph Tao-yi Wang 2012/12/13

(Lecture 9, Micro Theory I)

- One or more players know preferences only probabilistically (cf. Harsanyi, 1976-77)
- Cournot Duopoly Game (with private costs)
- Firm $i \in \Im$ of Type $\theta_i \in \Theta_i = \{\theta_{i1}, \cdots, \theta_{im_i}\}$
- Two firms; firm *i* of type θ_i has unit cost: $c(\theta_i)$ - Private information: Know own cost only...
- Choose output q_i ; market clearly price is: $p(q) = a - q_1 - q_2$

• For output vector q, firm i's profit is

$$u_i(q_i, q_{-i}, \theta_i) = (a - q_i - q_{-i} - c(\theta_i)) \cdot q_i$$

• Not knowing other's type, firms maximizes $U_i(q_i, \theta_i) = \mathop{\mathrm{E}}_{q_{-i}} \{u_i(q_i, q_{-i}, \theta_i)\}$

$$= (a - q_i - E\{q_{-i}\} - c(\theta_i)) \cdot q_i$$

• Optimal quantity is $q_i(\theta_i) = \arg \max_{q_i} \{U_i(q_i, \theta_i)\}$

• FOC is both necessary and sufficient since U_i is strictly concave

$$\frac{\partial U_i}{\partial q_i} = a - E\{q_{-i}\} - c(\theta_i) - 2q_i = 0, \ i = 1, 2.$$

• Therefore,

$$q_i^{BR}(\theta_i) = \frac{1}{2}(a - E\{q_{-i}\} - c(\theta_i)), \ i = 1, 2.$$

• Note this depends on beliefs about others!

- One or more players know preferences only probabilistically (cf. Harsanyi, 1976-77)
- Cournot Duopoly Game (with private costs)
- Firm $i \in \Im$ of Type $\theta_i \in \Theta_i = \{\theta_{i1}, \cdots, \theta_{im_i}\}$
- Two firms; firm *i* of type θ_i has unit cost: $c(\theta_i)$ - Private information: Know own cost only...
- Choose output q_i ; market clearly price is: $p(q) = a - q_1 - q_2$

• For output vector q, firm i's profit is

$$u_i(q_i, q_{-i}, \theta_i) = (a - q_i - q_{-i} - c(\theta_i)) \cdot q_i$$

• Not knowing other's type, firms maximizes $U_i(q_i, \theta_i) = \mathop{\mathrm{E}}_{q_{-i}} \{u_i(q_i, q_{-i}, \theta_i)\}$

$$= (a - q_i - E\{q_{-i}\} - c(\theta_i)) \cdot q_i$$

• Optimal quantity is $q_i(\theta_i) = \arg \max_{q_i} \{U_i(q_i, \theta_i)\}$

• FOC is both necessary and sufficient since U_i is strictly concave

$$\frac{\partial U_i}{\partial q_i} = a - E\{q_{-i}\} - c(\theta_i) - 2q_i = 0, \ i = 1, 2.$$

• Therefore,

$$q_i^{BR}(\theta_i) = \frac{1}{2}(a - E\{q_{-i}\} - c(\theta_i)), \ i = 1, 2.$$

• Note this depends on beliefs about others!

$$q_i^{BR}(\theta_i) = \frac{1}{2}(a - E\{q_{-i}\} - c(\theta_i)), \quad i = 1, 2.$$

- Firm 2's cost is known; firm 1's cost is private
- First-Order Belief: Suppose firm 2 believes firm 1's cost is higher than previous estimates
 - Firm 2: $E\{q_1\}$ decreases; q_2 increases
- Second-Order Belief: Suppose firm 1 believes firm 2 thinks 1's cost is higher than estimates

- Firm 1: $E\{q_2\}$ increases; q_1 decreases

$$q_i^{BR}(\theta_i) = \frac{1}{2}(a - E\{q_{-i}\} - c(\theta_i)), \quad i = 1, 2.$$

• Third-Order Belief: Suppose firm 2 believes firm 1 believes that firm 2 thinks 1's cost is higher than previous estimates

- Firm 2: $E\{q_1\}$ decreases; q_2 increases

- When does this cycle "end"?
- If there is Common Knowledge of Beliefs about Joint pdf $f(\theta_1, \dots, \theta_I)$ over $\Theta = \underset{i \in \mathfrak{I}}{\times} \Theta_i$

- Now assume types are iid (common knowledge) $f(\theta_1, \theta_2) = g(\theta_1)g(\theta_2)$
- Want to find equilibrium pure strategy: $q_i(\theta_i): \Theta_i \to A_i = \mathbb{R}_+$
- Compute expectation of BR: $q_i^{BR}(\theta_i) = \frac{1}{2} \left(a - \mathop{\mathrm{E}}_{\theta_{-i}} \{ q_{-i}(\theta_{-i}) \} - c(\theta_i) \right)$ $\mathop{\mathrm{E}}_{\theta_i} \{ q_i^{BR}(\theta_i) \} = \frac{1}{2} \left(a - \mathop{\mathrm{E}}_{\theta_{-i}} \{ q_{-i}(\theta_{-i}) \} - \mathop{\mathrm{E}}_{\theta_i} \{ c(\theta_i) \} \right)$

- Identical cost functions \rightarrow Identical $\overline{c} = \mathop{\mathrm{E}}_{\theta_i} \{c(\theta_i)\}$
- Symmetric type distribution \rightarrow Symmetric Eq.

$$\mathop{\mathrm{E}}_{\theta_i} \left\{ q_i(\theta_i) \right\} = \frac{1}{2} \left(a - \mathop{\mathrm{E}}_{\theta_{-i}} \left\{ q_{-i}(\theta_{-i}) \right\} - \overline{c} \right) = \frac{1}{3} \left(a - \overline{c} \right)$$

• So:

$$q_i^{BR}(\theta_i) = \frac{1}{2} \left(a - \mathop{\mathrm{E}}_{\theta_{-i}} \{ q_{-i}(\theta_{-i}) \} - c(\theta_i) \right)$$

$$= \frac{1}{2} \left(a - \frac{1}{3}(a - \overline{c}) - c(\theta_i) \right) = \frac{1}{3}a + \frac{1}{6}\overline{c} - \frac{1}{2}c(\theta_i)$$

- Since $q_i^{BR}(\theta_i) = \frac{1}{3}a + \frac{1}{6}\overline{c} \frac{1}{2}c(\theta_i)$
- Intuitively, $q_i^{BR}(\theta_i) = \frac{1}{3}(a-\overline{c}) \frac{1}{2}(c(\theta_i)-\overline{c})$ $= \mathop{\mathrm{E}}_{\theta_i} \left\{ q_i^{BR} \right\} - \frac{1}{2}(c(\theta_i)-\overline{c})$
- Demand is: $p(\theta) = a q_1(\theta) q_2(\theta)$
- $= \frac{1}{3}(a-\overline{c}) + \frac{1}{2}\left[c(\theta_1) + c(\theta_2)\right]$ • Expected Price: $\overline{p} = \frac{1}{3}a + \frac{2}{3}\overline{c}$

Simultaneous Move Games – General Case

- Player $i \in \Im$ has Type $\theta_i \in \Theta_i = \{\theta_{i1}, \cdots, \theta_{im_i}\}$
- Set of feasible Actions: A_i
- Set of all probability measures on $\Delta(A_i)$: S_i $\mathcal{S} = S_1 \times \cdots \times S_I, \ I = |\mathfrak{I}|$
- Strategy s_i for Player $i \in \mathfrak{I}$ of type $\theta_i \in \Theta_i$ is the function $s_i = s(\theta_i), \ s : \Theta_i \to S_i$
- Strategy Profile (of all players): $s = (s_1, \cdots, s_I)$

Bayesian Nash Equilibrium (BNE)

- Let $u_i(s; \theta_i), s \in S$ be the payoffs of player $i \in \mathfrak{I}$
- If his type is $\theta_i \in \Theta_i$ and strategy profile is $s \in S$
- Let $f(\theta_1, \cdots, \theta_I)$ be the joint distribution over types, which is common knowledge. Then, a
- strategy profile is a Bayesian Nash equilibrium
- If for each $\theta_i \in \Theta_i, i \in \mathfrak{I}$, $s(\theta_i)$ is a BR

- given the common knowledge beliefs

Bayesian Nash Equilibrium (BNE)

- As if Nature moves in stage 0 to choose – Player types $(\theta_1, \cdots, \theta_I) \in \Theta_1 \times \cdots \times \Theta_I$
- Nature's payoffs are the same for all outcomes
- It is a BR to play mixed strategy $f(\theta_1, \cdots, \theta_I)$
- BNE of the *I*-player game is the NE of the (*I*+1)-player game (with Nature moving first)
 All existence theorems apply...

Sealed First-Price and Second Price Auctions

- Bidding game with one single item for sale
- *n* risk neutral buyers
- Value is continuously distributed on the unit interval with cdf $F(\theta_i) \sim [0,1]$

- All this is common knowledge

- In Auction games,
- Buyer's type = Value (private information)
- Pure Strategy = Bid function $b = b_i(\theta_i)$

Sealed Second-Price Auction

• Each buyer submits one sealed bid

 $b_i \ge 0, i = 1, \cdots, n$

- Buyer who makes highest bid is the winner
 If there is a tie, the winner is chosen randomly from the tying high bidders
- The winning bidder pays the second-highest bid and receivers the item

Bidding one's value is a dominant strategy!

Dominance in Sealed Second-Price Auction

- Bidding one's value is a dominant strategy
 Note: This is independent of iid, # of bidders,...
- Proof: Consider maximum of all other bids m
- If buyer i deviates to $x < \theta_i$
- 1. For m < x: Buyer i still wins and still pays m
- 2. For $m > \theta_i$: Buyer *i* still loses (both the same)
- 3. For $x < m < \theta_i$: Buyer *i* now loses (could win)
- Similar if buyer *i* deviates to $x > \theta_i$ (homework)

BNE in Sealed Second-Price Auction

- Bidding one's value is a dominant strategy
- Consider the order statistics of values (highest to lowest): $\{\theta_{(1)}, \theta_{(2)}, \cdots, \theta_{(n)}\}$
- In this (dominance-solvable) BNE:
- Winner is buyer with value $\theta_{(1)}$ and pays $\theta_{(2)}$
- Buyer i's expected payment conditional on winning is $E\{\theta_{(2)}|\theta_{(1)}=\theta_i\}$
 - Note: There are other "crazy" asymmetric BNE...

• Each buyer submits one sealed bid

$$b_i \ge 0, i = 1, \cdots, n$$

- Buyer who makes highest bid is the winner
 If there is a tie, the winner is chosen randomly from the tying high bidders
- The winning bidder pays his bid and receivers the item

- Assume buyer values are iid $F(\theta) \sim [0, \beta]$
- Solve for Equilibrium Bidding Strategy $B(\theta_i)$
 - Symmetric (since we assume iid values)
 - Strictly increasing (high types unlikely to bid low)
 - Assume $B(\theta_i) \in C^1$ (by assuming $F(\theta) \in C^1$)
- If others follow BNE, the win probability of following BNE is $w(\theta_i) = F^{n-1}(\theta_i)$

- Win only when you are the highest type...

- For Equilibrium Payoff $u(\theta_i) = w(\theta)(\theta B(\theta))$
- If deviate to bidding a fixed $B(\theta_i)$, payoff is:

• Since
$$B(0) = 0$$
, we have $w(0) = 0$ and $u(0) = 0$
• Thus, $\frac{du}{d\theta}(\theta_i) = w(\theta_i)$ becomes:
 $u(\theta_i) = \int_0^{\theta_i} \frac{du}{d\theta} d\theta = \int_0^{\theta_i} w(\theta) d\theta$
 $= \theta_i w(\theta_i) - \int_0^{\theta_i} \theta dw(\theta) = w(\theta_i)(\theta_i - B(\theta_i))$
• Thus, $B(\theta_i) = \frac{\int_0^{\theta_i} \theta dw(\theta)}{w(\theta_i)} = E\left\{\theta_{(2)} | \theta_{(1)} = \theta_i\right\}$

Prop. 10.1-1/2: Revenue/Buyer Equivalences

- In an *n*-bidder auction where bidders are risk neutral and values are iid $F(\theta) \sim [0, \beta], F \in C^1$
- For the sealed first- and second-price auctions,
- <u>Proposition 10.1-1</u>: The equilibrium expected revenue is the same.
 - In fact, we have Buyer Equivalence as well!
- <u>Proposition 10.1-2</u>: The equilibrium payoff for each buyer type is the same.

Prop. 10.1-3/4: Strategic Equivalences

- Dutch Auction
- English Auction
- <u>Prop. 10.1-3</u>: Equilibrium bidding strategies of the FP and Dutch auctions are the same
- <u>Prop. 10.1-4</u>: Equilibrium bidding strategies of the SP and English auctions are the same

• Note: Not just revenue, and assumption free!

Sequential Move Games

- Player i_t moves in stage t has Type $\theta_t \in \Theta_t$
- Set of feasible Actions: A_t
- Set of all probability measures on $\Delta(A_t)$: S_t $\mathcal{S} = S_1 \times \cdots \times S_T$
- Strategy s_t for Player i_t of type $\theta_t \in \Theta_t$ is the function $s_t = s(h^t, \theta_t), \ s : H^t \times \Theta_t \to S_t$
- Strategy Profile (of all players): $s = (s_1, \cdots, s_T)$

BNE in Sequential Move Games

- Let $u_t(s; \theta_t), s \in S$ be the payoffs of player i_t
- If his type is $\theta_t \in \Theta_t$ and strategy profile is $s \in S$
- Let $f(\theta_1, \cdots, \theta_T)$ be the joint distribution over types, which is common knowledge. Then, a
- strategy profile is a Bayesian Nash equilibrium
- If for each t and $\theta_t \in \Theta_t$, $s_t(h^t, \theta_t)$ is a BR

- given the common knowledge beliefs

• Note: Assume independent types for 10.1...

Sequential Move Games – An Example

- Cournot Duopoly Game (with private costs)
- Two firms; firm *i* has unit cost: c_i, *i* = 1, 2
 Private information: Know own cost only...
- Choose output q_i ; market clearly price is: $p(q) = a - q_1 - q_2$
- Firm 1 moves first
- Firm 2 observes and chooses $q_i^{BR}(q_1, c_2)$ – Anticipated by Firm 1...

Sequential Move Games – An Example

- Firm 1 forms belief $E_1\{c_2\}$
- For output vector q, firm 2's profit is $U_2(q, c_2) = (a - q_1 - q_2 - c_2) \cdot q_2$
- Firm 2's optimal quantity is

$$q_2^{BR}(q_1, c_2) = \arg \max_{q_2} \{U_2(q, c_2)\} = \frac{1}{2}(a - c_2 - q_1)$$

• Firm 1's belief is $q_2^{BR}(\overline{c}_{12}) = \frac{1}{2}(a - E_1\{c_2\} - q_1)$

Sequential Move Games – An Example

- Firm 1's belief is $q_2^{BR}(\overline{c}_{12}) = \frac{1}{2}(a E_1\{c_2\} q_1)$
- Profit: $U_1 = (a q_1 q_2^{BR}(\overline{c}_{12}) c_1)q_1$ $= \left| \frac{1}{2}(a-q_1) + \frac{1}{2}E_1(c_2) - c_1 \right| q_1$ • Maximized at: $q_1^{BR} = \frac{1}{2}a - c_1 + \frac{1}{2}E_1\{c_2\}$ • So, $q_2^{BR}(q_1, c_2) = \frac{1}{2}(a - c_2 - q_1)$ • (3 firms?) $= \frac{1}{4}a + \frac{1}{2}(c_2 - c_1) - \frac{1}{4}E_1(c_2)$

Summary of 10.1

- Bayesian Games
 - Incomplete Information as "Types"
- Bayesian Nash Equilibrium
- Auction Games:
 - First-Price (Dutch) vs. Second-Price (English)
 - Revenue/Buyer/Strategic Equivalences
- HW 10.1: Riley 10.1-1, 3, 4
- Do the case of $x > \theta_i$ in second-price auctions