

Preferences, Utility and Choice

- Empirically, we see people make choices
- Can we come up with a theory about "why" people made these choices?
- Preferences: People choose certain things instead of others because they "prefer" them
 - As an individual, preferences are primitive; my choices are made based on my preferences
- Can we do some reverse engineering?

Preferences, Utility and Choice

- Revealed Preferences: Inferring someone's preferences by his/her choices
 - As an econometrician, choices are primitive; preferences are "revealed" by observing them
- Not formally discussed in our textbook, but the idea of revealed preferences is everywhere...
- Also, MWG show WARP "=" total + transitive
 - See my presentation on Predictably Irrational...
- Can we do further reverse engineering?

Preferences, Utility and Choice

Choices $\leftarrow \rightarrow$ Preferences $\leftarrow \rightarrow$ Utility

- Can we describe preferences as a function?
- Utility: A function that "describes" preferences
 - Someone's true utility may not be the same as what economists assume, but they behave "as if"
- What are the axioms needed for a preference to be described by a utility function?

Why do we care about this?

- Objective function required for constrained max.
- We cannot observe one's real utility (objective)
 - Neuroeconomics is trying this, but "not there yet" (Except places that don't care about human rights)...
- However, we can observe one's choices
 - We can try to elicit preferences by asking people to make a lot of choices (= revealed preference!)
- Can we find a utility function (an economic model) that describes these preferences?
- If yes, we can use it as our objective function....

Preferences: How alternatives are ordered?

- A binary relation for household h: $\succeq_h x^1 \succeq_h x^2$ (x^1 is ordered as least as high as x^2)
 - But order may not be defined for all bundles...
- Weak inequality order:
 - $x^1 \succsim_h x^2 \,$ if and only if $x^1 \ge x^2$
 - Cannot define order between (1,2) and (2,1)...

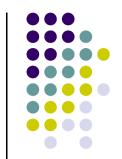
Preferences: Completeness and Transitivity

- To represent preferences with utility function, consumer needs to be compare all bundles...
- Complete Axiom: (Total Order)

For any consumption bundle $x^1, x^2 \in X$, either $x^1 \succeq_h x^2$ or $x^2 \succeq_h x^1$.

- Also need consistency across pair-wise rankings...
- Transitive Axiom:

For any consumption bundle $x^1, x^2, x^3 \in X$, if $x^1 \succeq_h x^2$ and $x^2 \succeq_h x^3$, then $x^1 \succeq_h x^3$.



7

Preferences: Indifference; Strictly Preferred

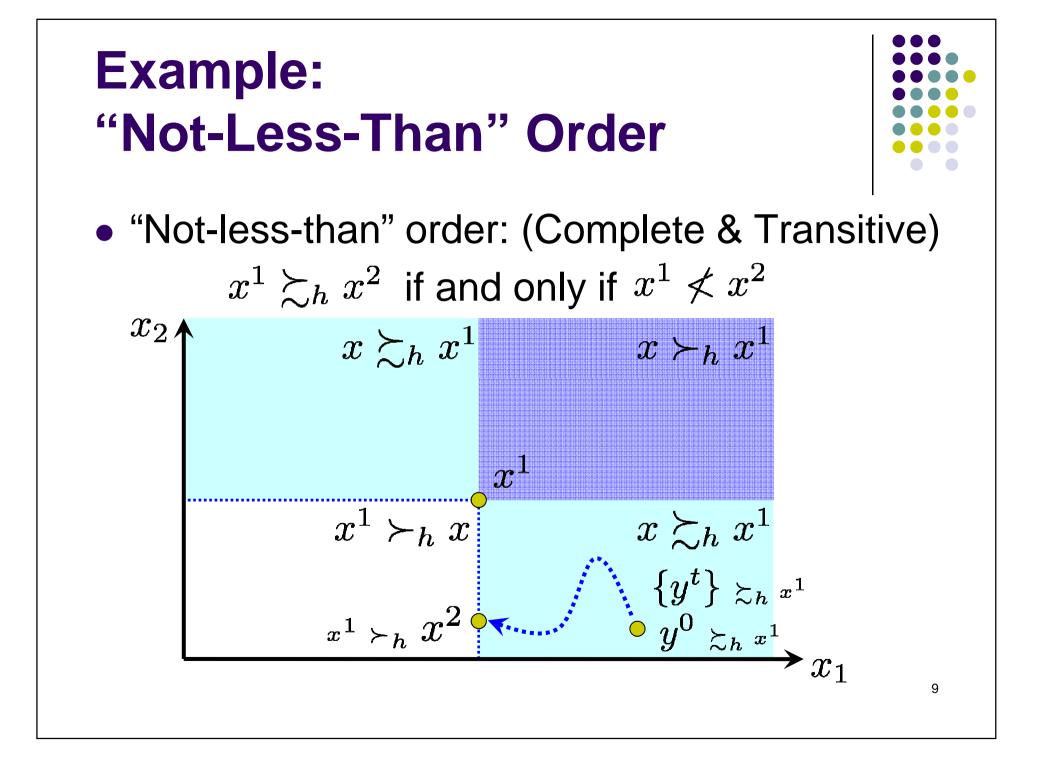
• Indifference:

 $x^1 \succeq_h x^2$ if and only if $x^1 \sim_h x^2$ and $x^2 \succeq_h x^1$

• Strictly Preferred:

 $x^1 \succ_h x^2$ if and only if $x^1 \succeq_h x^2$, but $x^2 \not\succeq_h x^1$ $x^2 \succ_h x^1$ if and only if $x^2 \succeq_h x^1$, but $x^1 \not\succeq_h x^2$

- Indifference order and strict preference order are both transitive, but not complete (total)
- The two axioms above are not enough...



Continuous Preferences

- Why is non-continuous order a problem? $y^t(\sim_h x^1) \to x^2, \, {\rm but} \ x^1 \succ_h x^2$
- Corresponding utility also not continuous! $U(y^t) = U(x^1) \nrightarrow U(x^2) > U(x^1)$
- Continuous Order:

Suppose $\{x^t\}_{t=1,2,\dots} \to x^0$. For any bundle y, If for all $t, x^t \succeq_i y$ then $x^0 \succeq_i y$. If for all $t, y \succeq_i x^t$ then $y \succeq_i x^0$.

Preferences: Where Do These Postulates Apply?

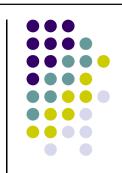
- More applicable to daily shopping (familiar...)
 - Can you rank things at open-air markets in Turkey?
- What if today's choice depends on past history or future plans? Consider: $x_t = (x_{1t}, x_{2t}, \cdots, x_{nt})$ Then use $x = (x_1, x_2, \cdots, x_t, \cdots, x_T)$
- What if there is uncertainty about the complete bundle? Consider: $(x_1, x_2^g, x_2^b; \pi^g, \pi^b)$
- Would adding time and uncertainty make the commodities less "familiar"?

Preferences: LNS (rules out "total indifference")

- Back to full information, static (1 period) case:
- A "everything-is-as-good-as-everything" order satisfies all other postulates so far
 - But this isn't really useful for explaining choices...
- Local non-satiation (LNS):

For any consumption bundle $x \in C \subset \mathbb{R}^n$ and any δ -neighborhood $N(x, \delta)$ of x, there is some bundle $y \in N(x, \delta)$ s. t. $y \succ_h x$

Preferences: Strict Monotonicity



- Another strong assumption is "More is always strictly preferred."
 - Natural for analyzing consumption of commodity groups (food, clothing, housing...)
- Strict Monotonicity:

If y > x, then $y \succ_h x$.

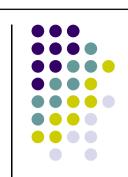
Preferences: Convexity

- Final postulate: "Individuals prefer variety."
- Convexity:

Let C be a convex subset of \mathbb{R}^n For any $x^0, x^1 \in C$, if $x^0 \succeq_h y$ and $x^1 \succeq_h y$, then $x^{\lambda} = (1 - \lambda)x^0 + \lambda x^1 \succeq_h y, 0 < \lambda < 1$.

• Strict Convexity:

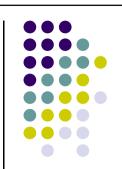
For any $x^0, x^1, y \in C$, if $x^0 \succeq_h y$ and $x^1 \succeq_h y$, then $x^{\lambda} \succ_h y, 0 < \lambda < 1$.



Proposition 2.1-1: When is the Utility Function Continuous?

- Utility Function Representation of Preferences
 If preferences are complete, (reflective? x ≿_h x),
 transitive and continuous on C ⊂ ℝⁿ,
 they can be represented by a function U(x)
 which is continuous over X.
- This means we can use a utility function to represent preferences, and use it as the objective function in constraint maximization
- Special Case: Strict Monotonicity

Special Case: Strict Monotonicity

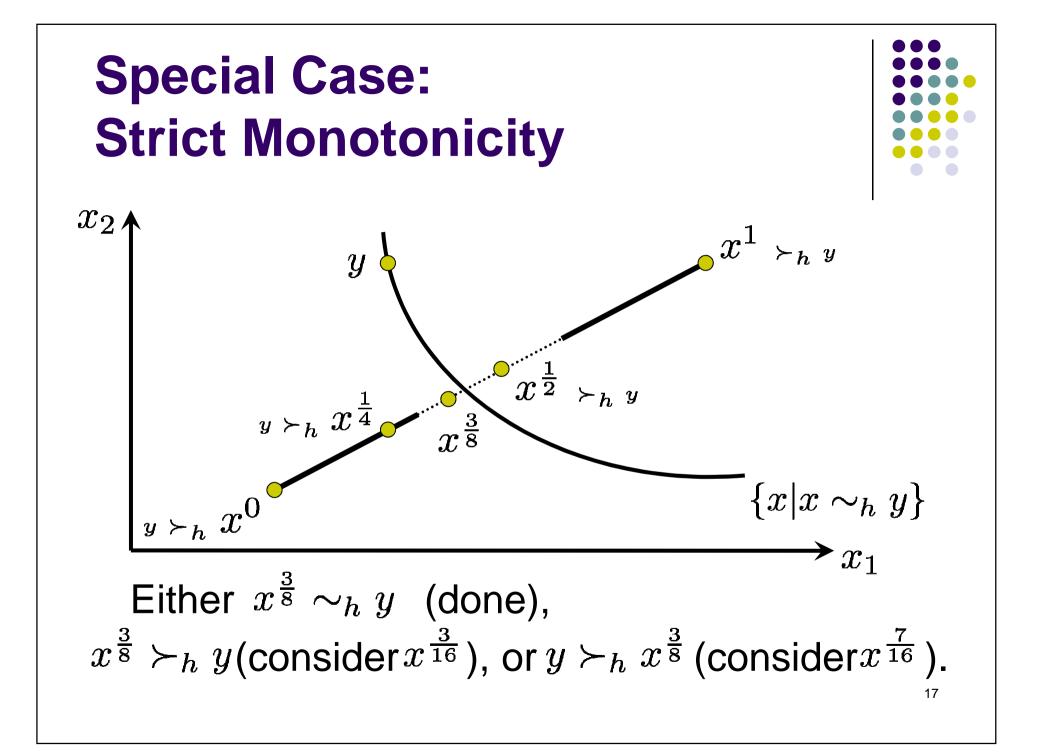


Consider $x^0, x^1 \in X, x^1 > x^0 \Rightarrow x^1 \succ_h x^0$ For $T = \{x \in S | x^1 \succeq_h x \succeq_h x^0\},$

Claim:

For any $y \in T$, there exists some weight $\lambda \in [0, 1]$ such that $y \sim_h x^{\lambda}$ where $x^{\lambda} = (1 - \lambda)x^0 + \lambda x^1$ Moreover, $\lambda(y) : T \rightarrow [0, 1]$ is continuous. Proof:

Consider the sequence of intervals $\{x^{\nu_t}, x^{\mu_t}\}$, Appeal to the completeness of real numbers...



Special Case: Strict Monotonicity

Goal: Find $x^{\lambda} \sim_h y$ as the limiting point of Sequences $x^{\nu_t}(\succeq_h y)$ and $(y \succeq_h) x^{\mu_t}$ Start with $\nu_0 = 1, \ \mu_0 = 0$. Let $\lambda_{t+1} = \frac{1}{2}(\nu_t + \mu_t)$ If $y \sim_h x^{\lambda_t}$, we are done. If $y \succ_h x^{\lambda_t}$, $\nu_{t+1} = \nu_t$, $\mu_{t+1} = \lambda_{t+1}$ If $x^{\lambda_t} \succ_h y, \nu_{t+1} = \lambda_{t+1}, \mu_{t+1} = \mu_t$ $x^0 = x^{\nu_0} \succ_h \cdots \succ_h x^{\nu_n} \succ_h y$ $y \succ_h x^{\mu_n} \succ_h \cdots \succ_h x^{\mu_0} = x^1$ Completeness of real numbers $\rightarrow \hat{\lambda}(y)$ exists.

Summary of 2.1

- Preference Axioms
 - Complete
 - Transitive
 - Continuous
 - Monotonic
 - Convex / Strictly Convex
- Utility Function Representation
- Homework: TBA

