Online Math Camp (23ふ) TA Session Note $(5 / 22)$

Dirichlet Function

$$
f(x)= \begin{cases}0 & \text { if } x \neq \mathbb{Q} \\ \frac{1}{q} & \text { if } x=\frac{p}{q}, p, q \in \mathbb{Z},(p, q)=1 .\end{cases}
$$

1. $f(x)$ is continuous on \mathbb{Q} :

Take $\frac{p}{q} \in \mathbb{Q}, \quad \forall \delta>0, \exists \varepsilon=\frac{1}{2 q} \Rightarrow \cdots$
2. $f(x)$ is not continuous on $\mathbb{R} \backslash \mathbb{R}$:

Take $x \in \mathbb{R} \backslash \mathbb{Q}, \varepsilon>0, \exists n \in \mathbb{N}$ such that $\frac{1}{n}<\varepsilon$.
Let $d=\min \left\{\left.\left|x-\frac{p}{q}\right| \right\rvert\, q \leqslant n, q \in \mathbb{N}, p \in \mathbb{Z}_{1}\right\}>0$
Consider $\delta=d, \cdots$
Notation $\left\{\begin{array}{l}f \lambda \text { (increasing) , f } \quad f / \text { (strictly increasing) } \\ f \searrow \text { (de- })\end{array}\right.$

Monotone Function
Prop. $f\left(x^{-}\right), f\left(x^{+}\right)$exists for every $x \in \mathbb{R}$ if $f: \mathbb{R} \rightarrow \mathbb{R}$ is monotone. (pf) WLOG:f

Claim $f\left(x^{-}\right)=\sup _{x^{\prime}<x} f\left(x^{\prime}\right)$.
(1) $\forall \varepsilon>0$, $\sup _{x^{\prime}(<x} f\left(x^{\prime}\right)-\varepsilon$ is not an upper hound.

$$
\Rightarrow \exists \delta>0, f(x-\delta)>\sup _{x^{\prime}<x} f\left(x^{\prime}\right)-\varepsilon
$$

(2) $\forall \delta^{\prime}<\delta, \quad f(x-\delta) \geqslant f(x-\delta)>\sup f\left(x^{\prime}\right)-\varepsilon$
(${ }^{L}$)
Combine $\sigma,(\Omega), \forall \varepsilon>0, \exists \delta>0$ such that

$$
\delta^{\prime}<\delta \Rightarrow\left|f(x)-\delta^{\prime}\right|-\sup _{x^{\prime}<x} f\left(x^{\prime}\right)<\varepsilon
$$

Prop. A monotone function has at most countably infinite discontinuities.
(pf) Label every discontinuity x with $\left(f\left(x^{-}\right), f\left(x^{+}\right)\right)$.
The set of discontinuities gives you a set of clisjoint open intervals.
(Think about the connection between open intervals and rationals in them.)

Differentiation
Def: $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$E X=\frac{d}{d x} x^{2}=2 x$:
(pf) $\frac{d}{d x} x^{2}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0}(2 x+h)=2 x$
$\forall \varepsilon>0$, pick $\delta=\varepsilon$, then

$$
|h-0|<\delta \Rightarrow|h|<\delta \Rightarrow|(2 x+h)-2 x|<\delta=\varepsilon_{\#}
$$

MVT(Mean Value Theorem) $f: \operatorname{diff.}, a, b \in \mathbb{R}, a<b$. $\exists c \in(a, b)$ such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$.

(pf) Do Rolls's Thin on $g(x)=f(x)-(x-a) \cdot \frac{[f(b)-f(a)]}{b-a}$:

$$
g(a)=g(b)=f(b) \Rightarrow \exists c \in(a, b), \quad g^{\prime}(c)=0 \ldots
$$

General MVT

$$
\begin{aligned}
& f, g: \text { diff. } \quad g \neq 0, \quad g(a) \neq g(b) \\
& \Rightarrow \exists c \in(a, b), \frac{f(a)-f(b)}{g(a)-g(b)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
\end{aligned}
$$

(pf) To show that $[f(a)-f(b)] \cdot g^{\prime}(c)-[g(a)-g(b)] \cdot f^{\prime}(c)=0$, we define $h(x)=[f(a)-f(b)] g(x)-[g(a)-g(b)] f(x)$ since $h(a)=h(b)$, by Rule's Thin, $\exists c$ such that $h^{\prime}(c)=0$ \#.

Preview
Def. Let $\left\{f_{n}\right\}$ be a real-valued function defined on E. f_{n} converges pointwisely to f if $\forall x \in E, \lim _{n \rightarrow \infty} f_{n}(x)=f(x)$. denoted as $f_{n} \rightarrow f$.

Def: If f is bounded, $\|f\|=\sup _{x \in E}|f(x)|$
Def: We say f_{n} converges uniformly to f if $\forall \varepsilon>0, \exists N>0$ such that $\forall n>N,\left\|f_{n}-f\right\|<\varepsilon$. denoted as $f_{n} \xrightarrow{u} f$.

Prop. Let $C_{b}(E)=\{f: E \rightarrow \mathbb{R}$ such that f is bounded and continuous $\}$ Then $\mathcal{C}_{b}(E)$ is a metric space with metric $d(f, g)=\|f-g\|$.

Thin $f_{n} \xrightarrow{u} f$, f_{n} is bounded and continuous.
Then, f is bounded and continuous.
(pf) $|f(x)-f(y)| \leqslant\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)-f_{n}(y)\right|+\left|f_{n}(y)-f(y)\right|$
Since $f_{n} \xrightarrow{u} t, \exists N>0$ such that $\left\|f_{n}-f\right\|<\frac{\varepsilon}{3}$.
f is continuous $\Rightarrow \forall \varepsilon>0, \exists \delta>0$ such that $\left|f_{N}(x)-f_{N}(y)\right|<\frac{\varepsilon}{3}$ when $|x-y|<\delta$
$\Rightarrow|f(x)-f(y)|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon$. lie. f is continuous.
Also, $|f(x)|<\left|f_{n}(x)-f(x)\right|+\left|f_{n}(x)\right|$

$$
\Rightarrow\|f\| \leqslant\left\|f_{n}-f\right\|+\left\|f_{n}\right\|<M+\varepsilon \quad \Rightarrow f \text { is bounded. }
$$

The $f_{n} \xrightarrow{u} f \Leftrightarrow\left\{f_{n}\right\}$ is $C_{\text {anclly }}$ in $C_{b}(E)$.
(pf) $\Rightarrow\left\|f_{n}-f_{m}\right\| \leq\left\|f_{n}-f\right\|+\left\|f-f_{m}\right\|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$ for sine $n, m>N$.

$$
\Leftrightarrow \Leftrightarrow x \in E,\left|f_{n}(x)-f_{n}(x)\right|<\varepsilon, \forall n, m>N
$$

So $f_{n}(x)$ is a Canchy sequence in \mathbb{R}.
Since \mathbb{R} is complete, $f_{n}(x) \rightarrow f(x)$ in $\mathbb{R} . \Rightarrow f_{n} \rightarrow f($ point wisely)
$\forall x \in E, \exists m(x) \geqslant N$ such that $\left|f_{m(x)}(x)-f(x)\right|<\varepsilon$.

$$
\begin{aligned}
\left|f(x)-f_{h}(x)\right| & \leqslant\left|f(x)-f_{m(x)}(x)\right|+\left|f_{m(x)}(x)-f_{n}(x)\right|, \quad \forall n>N . \\
& <\varepsilon+\varepsilon=2 \varepsilon
\end{aligned}
$$

Take $\varepsilon^{\prime}=2 \varepsilon$. dore. $\#$

Thin There exists a continuous function on \mathbb{R} that is nowhere differentiable.
$E X=f_{1}=\sim f_{1}$
$f_{2}=M_{M} \cdots \cdots \quad f_{1}+f_{2}$
$f_{3}=$ mum...

$$
f_{1}+f_{2}+f_{3}
$$

(Chap. 9 of Rubin)
Construction $\varphi(x)=|x|, \quad-1 \leqslant x \leqslant 1, \quad \varphi(x+2)=\varphi(x)$
Let $f(x)=\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} \varphi\left(4^{n} x\right)$
Then f is continuous, but nowhere diff.

