Online Math Camp (23ふ) TA Session Note (5/15)

Continuity
Def: $\forall \varepsilon>0, \exists \delta>0$ such that $\frac{\left|x^{\prime}-x\right|<\delta}{x^{\prime} \in B_{\delta}(x)} \Rightarrow \frac{\left|f\left(x^{\prime}\right)-f(x)\right|<\varepsilon \text {. }}{f\left(x^{\prime}\right) \in B_{\varepsilon}(f(x))}$
Thin $f: X \rightarrow Y$ continuous $\Leftrightarrow \forall V$ open $, V \subseteq Y, \exists U_{\text {open, }} U \subseteq X$ such that

$$
x \in U \Rightarrow f(x) \in V
$$

Th'm $f: X \rightarrow Y$ continuous $\Leftrightarrow \forall V_{\text {open, }} V \subseteq Y \Rightarrow f^{-1}(V)_{\text {open }}, f^{-1}(V) \subseteq X$. (pf) $\Leftrightarrow$ Wart to Show (WTS) $\forall x \in f^{-1}(V), \exists r>0$ such that $B_{r}(x) \subseteq f^{-1}(V)$.

Take $x \in f^{-1}(V)$

$$
\begin{aligned}
& x^{\prime} \in \rho_{r}^{\prime}(x) \Rightarrow x^{\prime} \in f^{-1}(V) \\
& d\left(x_{1}^{\prime} x\right)<r \quad x^{\prime} \\
& f_{1}^{\prime}\left(x^{\prime}\right) \in V
\end{aligned}
$$

$V$ open $\Rightarrow \exists r^{\prime}>0$ such that $B_{r^{\prime}}(f(x) \leqslant V$
$\Rightarrow \exists r>0$ such that $B_{r}(x) \leq f^{-1}\left(B_{r}(f(x))\right) \leq f^{-1}(v)_{*}$
$(\Leftrightarrow)$ Take $V$ as open ball.

Corr. $f^{-1}(F)$ is closed if $F$ is closed and $f$ is continuous.
(pt) $f^{-1}(F)=\left(f^{-1}\left(\frac{F^{c}}{\downarrow}\right)\right)^{c}$ is closed since $f^{-1}\left(F^{c}\right)$ is open. $\xrightarrow{I}$ open ,open by The
Thin $f: X \rightarrow Y$ is continows and $g: Y \rightarrow Z$ is continuous.
$\Rightarrow g \circ f: X \rightarrow Z$ is continuous. open by Then
(p t\#1) $V_{\text {open }}, V \leqq Z \Rightarrow(g \cdot f)^{-1}(V)=f^{-1}\left(g^{-1}(V)\right)$ is open.
By above Thin, goo is continuous. \#
(pf \#2) WTS: $\forall \varepsilon>0 \exists \delta>0$ sud that $B_{\delta}^{X}\left(x_{1}\right) \subseteq(\operatorname{gof})^{-1}\left(B_{\varepsilon}^{Z}(\operatorname{gof}(x))\right)$
Since $g$ is continuous, $\exists \delta_{1}>0$ nod that $B_{\delta_{1}}^{Y}(f(x)) \subseteq g^{-1}\left(B_{\varepsilon}^{Z}((g f f)(x))\right)$
$f$ is continuous, $\exists \delta_{2}>0$ such that $B_{\delta_{2}}^{x}(x) \leq f^{-1}\left(B_{\delta_{1}}^{Y}(f \mid x)\right)$ $\subseteq \mathcal{f}^{-1}\left(g^{-1}\left(B_{\varepsilon}^{\varepsilon}((g \sigma)(x))\right)\right) . \not \approx$

Them $f: X \rightarrow Y$, continuous. $K$ compact, $K \subseteq X \Rightarrow f(K)$ compact \& $f(K) \subseteq Y$.
(pf) $\left\{v_{\alpha}\right\}$ : open cover of $f(k)$.
$\Rightarrow\left\{f^{-1}\left(V_{\alpha}\right)\right\}$ : open cover of $K$.
$\Rightarrow\left\{f^{-1}\left(V_{\alpha_{i}}\right)\right\}$ : finite open cover of $K$.
$\Rightarrow\left\{V_{\alpha_{i}}\right\}$ : finite open cover of $f(k)$. \#/
Uniformly Continuous
Thin $f: X \rightarrow Y$ continuous, $X=$ compact $\Rightarrow f$ is uniformly continuous.
i.e. $\forall \varepsilon>0, \exists \delta>0, \forall x \in X, \quad \delta\left(x^{\prime}, x\right)<\delta \Rightarrow \delta\left(f\left(x^{\prime}\right), f(x)\right)<\varepsilon$ Independent of $x!!$

Them $f: X \rightarrow Y$, continuous. $C$ connected in $X \Rightarrow f(C)$ connected in $Y$.
(pf) Suppose $f(C)=A \cup B$, hon-empty \& separated.
Claim: $f^{-1}(A), f^{-1}(B)$ is separated.

$$
\text { i.e. } \begin{aligned}
& f^{-1}(A) \cap f^{-1}(B) \\
& \wedge \phi \\
& \cap f^{-1}(\bar{A}) \cap f^{-1}(B)=f^{-1}(\bar{A} \cup B)
\end{aligned}
$$

IV $f: x \rightarrow \mathbb{R}$ continumes, $x$ connected If $f\left(x_{1}\right)=a, f\left(x_{2}\right)=b, c \in[a, b]$, then $\exists x \in X$ such that $f(x)=c$.

Differentiability
Def. A function $f:[a, b] \rightarrow \mathbb{R}$ is differentiable at $x$ if $\lim _{t \rightarrow x} \frac{f(x)-f(t)}{x-t}=L$, and the derivative of $f$ at $x$ is $f^{\prime}(x)=L$.
Def: A function $f:[a, b] \rightarrow \mathbb{R}$ is differentiable if it is differentiable at all $x \in[a, b]$.

$$
E X=f(x)=x^{2} ; \quad \lim _{t \rightarrow x} \frac{f(x)-f(t)}{x-t}=\lim _{t \rightarrow x} \frac{x^{2}-t^{2}}{x-t}=\lim _{t \rightarrow x} x+t=2 x, \Rightarrow f^{\prime}(x)=2 x .
$$

$E X: f(x)=\sin x: \lim _{t \rightarrow x} \frac{\sin x-\sin t}{x-t}=\lim _{t \rightarrow x} \frac{2 \cos \left(\frac{x+t}{2}\right)\left(\sin \left(\frac{x+t}{2}\right)\right.}{x-t}=\lim _{t \rightarrow x} \cos \left(\frac{x+t}{2}\right) \cdot \frac{\sin \left(\frac{x-t}{2}\right)}{\frac{x-t}{2}}$

$$
=\cos x=f^{\prime}(x)
$$

Ex: $f(x)=|x|$ is not diff. at $x=0: \lim _{t \rightarrow 0} \frac{|t|-|0|}{t-0}=\lim _{t \rightarrow 0} \frac{|t|}{t}$ doesn't exist.

Prop. $f$ is diff. $\Rightarrow f$ is continous
(pt) If $\lim _{t \rightarrow x} \frac{f(x)-f(t)}{x-t}$ exist, than $x \rightarrow t \rightarrow 0 \Rightarrow f(x)-f(t) \rightarrow 0$.
Note: The converse is not true. Continuous function $f(x)=|x|$ is not diff. at $x=0$.
$E x=$ If $f$ is diff, is $f^{\prime}$ continuous?
No! $f(x)=\left\{\begin{array}{ll}\sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$ is diff. $\Rightarrow f^{\prime}(x)= \begin{cases}2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{cases}$
$P_{\text {rp. }}$ (i) $(f+g)^{\prime}=f^{\prime}+g^{\prime}$
(ii) $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$
(pf) (i) $\lim _{t \rightarrow x} \frac{f(x)+g(x)-f(t)-g(t)}{x-t}$
(iii) $f=c \Rightarrow f^{\prime}=0$
(iv) $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}$

$$
=\lim _{t \rightarrow x} \frac{f(x)-f(t)}{x-t}+\lim _{t \rightarrow x} \frac{g(x)-f(t)}{x-t}
$$

$$
=f^{\prime}(x)+g^{\prime}(x)
$$

(听)(ii) $\lim _{t \rightarrow x} \frac{f(x) g(x)-f(x) g(t)}{x-t}=\lim _{t \rightarrow x} \frac{f(x) g(x)-f(x) g(t)+f(x) g(t)-f(t) g(t)}{x-t}$

$$
=\varliminf_{t \rightarrow x}\left[f(x) \frac{g(x)-g(t)}{x-t}+g(t) \cdot \frac{f(x)-f(t)}{x-t}\right]=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)
$$

(iii) $\operatorname{li}_{t \rightarrow x} \frac{c-c}{x-t}=0$
(iv) Since $\left(g \cdot \frac{1}{g}\right)^{\prime}=0=g^{\prime} \cdot \frac{1}{g}+g\left(\frac{1}{g}\right)^{\prime} \Rightarrow\left(\frac{1}{g}\right)^{\prime}=-\frac{g^{\prime}}{g^{2}}$

By (ii), $\left(\frac{f}{g}\right)^{\prime}=f^{\prime} \cdot \frac{1}{g}+f\left(\frac{1}{g}\right)^{\prime}=\frac{f^{\prime} g-f \cdot g^{\prime}}{g^{2}}$

Ex: $f(x)=x^{2}$. $\Rightarrow f^{\prime}(x)=(x)^{\prime} \cdot x+x \cdot(x)^{\prime}=2 x \quad \sin a \quad(x)^{\prime}=\operatorname{li}_{t \rightarrow x} \frac{x-t}{x-t}=1$.

$$
\Rightarrow\left(x^{3}\right)^{\prime}=\left(x^{2}\right)^{\prime} \cdot x+x^{2} \cdot(x)^{\prime}=2 x^{2}+x^{2}=3 x^{2}
$$

By Induction, $\left(x^{n}\right)^{\prime}=n x^{n-1}$.
$E x: f(x)=\frac{\sin x}{x}, x \neq 0 \Rightarrow f^{\prime}(x)=\frac{1}{x^{2}}\left[(\sin x)^{\prime} x-(\sin x) \cdot(x)^{\prime}\right]=\frac{(\cos x) \cdot x-\sin x}{x^{2}}$
for $x \neq 0$.
Rolle's Thin If $f:[a, b] \rightarrow \mathbb{R}$ is diff. and $f(a)=f(b)$.
Then, $\exists c \in(a, b)$, such that $f^{\prime}(c)=0$.
(pt) If $f(x)=c$, then $f^{\prime}(x)=0 \quad \forall x \in[a, b]$
If not, by Weierstrass $T^{\prime} n$, $f$ achieves maximin or minimum is $(a, b)$. Suppose $f(c)$ is maximum $(w(0)), c \in(a, b)$,

$$
f^{\prime}(c)=l_{t \rightarrow c}^{\prime} \frac{f(c)-f(t)}{c-t}=0 \text { since }\left\{\begin{array}{l}
\lim _{t \rightarrow c^{+}} \frac{f(c)-f(t)^{\geqslant 0}}{c-t<0} \leqslant 0 \\
\operatorname{lic}_{t \rightarrow c^{-}} \frac{f(c)-f(t) \geqslant 0}{c-t>0} \geqslant 0
\end{array}\right.
$$

MVT (Mean Value Th'
If $f:[a, b] \rightarrow \mathbb{R}$ is diff., then $\exists c \in(a, b)$ such that $f(b) f(a)=f^{\prime}(c)(b-a)$.
(pf) $g(x)=f(x)-r x, \quad r=\frac{f(b)-f(a)}{b-a}$
$g(b)-g(a)=[f(b)-f(a)]-r(b-a)=0 \Rightarrow g(b)=g(a)$.
By Rolle's Thin, $\exists c \in(a, b)$ such that $g^{\prime}(c)=f^{\prime}(c)-r=0$

$$
\Rightarrow f^{\prime}(l)-r=\frac{f(b)-f(a)}{b-a} . \neq
$$

Prop. If $f^{\prime}(x)>0, \forall x$, then $f$ is increasing.
(pf) For $b>a, f(b)-f(a)=\begin{gathered}f^{\prime}(c) \cdot(b-a) \\ v_{0}\end{gathered}$, for some $c \in(a, b)$
So, $f^{\prime}(c)>0 \Rightarrow f(b)>f(a)$

