Online Math Camp (23ふ) TA Session Note $(5 / 8)$

Thu The series $\frac{1+\frac{1}{2}+\frac{1}{3}+\cdots=\sum \frac{1}{n} \text { Harmonic Series }}{\text { Diverges }}$
(pf) $1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots+\frac{1}{8}+\frac{1}{9}+\cdots+\frac{1}{16}+\cdots$
$\geqslant 1+\frac{1}{2}+\frac{\overline{\frac{1}{4}+\frac{1}{4}}}{\frac{{ }^{1}}{2}}+\frac{\overline{1}+\cdots+\frac{1}{8}}{\frac{" 1}{2}}+\frac{\overline{\frac{1}{16}+\cdots+\frac{1}{16}}}{\frac{1}{2}}+\cdots$ which diverges.

Comparison Test
Let $a_{n} \geqslant b_{n} \geq 0 . \Rightarrow\left\{\begin{array}{llll}\text { (1) } & \text { If } & \sum a_{n} \text { converges, then } \sum b_{n} \text { converges. } \\ \text { (2) } & \text { If } \sum & b_{n} & \text { diverges, }\end{array}\right.$

Root Test
Let $a_{n} \geqslant 0 . \Rightarrow \begin{cases}(1) & \text { If } \lim u_{p} \\ \sqrt[n]{a_{n}}<1, & \text { then } \sum a_{n} \text { converges. } \\ \text { (2) } & \text { If limens } \sqrt[n]{a_{n}}>1 \text {, then } \sum a_{n} \text { diverges. }\end{cases}$
(Sketch of pf)
(1) $\operatorname{lin} \sup \sqrt[n]{a}<1 \Rightarrow \exists \beta<1, N \in \mathbb{N}$ such that $\sqrt[n]{a_{n}}<\beta \quad\left(\right.$ egg. $\left.\beta=\frac{\lim n p \sqrt[n]{n}+1}{2}\right)$ $\Rightarrow a_{n}<\beta^{n}$. By comparison test $\sum a_{n}<\sum \beta^{n}$ converges.
(2) $\forall N \in \mathbb{N}, \exists n \in \mathbb{N}$ such that $n>N, a_{n}>1 \Rightarrow a_{n} * 0_{*}$

Ratio Test
Let $\sum a_{n}$ be a series, and $a_{n} \neq 0$ for large enough n.
(1) If lin sup $\left|\frac{a_{n+1}}{a_{n}}\right|<1$, then $\sum a_{n}$ converges.
(2) If $\left|\frac{a_{n+1}}{a_{n}}\right| \geqslant 1$ for n large enough, then $\sum a_{n}$ diverges.

Abel's Thin
$A_{n}=\sum_{i=0}^{n} a_{i}$ is bounded, b_{n} is monotonic decreasing, and $b_{n} \rightarrow 0$.
Then, $\sum a_{n} b_{n}$ converges.
$E X=\sum \frac{\frac{1}{n}}{b_{n}} \frac{\sin \left(\frac{n \pi}{4}\right)}{a_{n}}$ converges by Abel's Thin.

Absolute Convergence
Does $1-1+\frac{1}{2}-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\frac{1}{3}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+\frac{1}{3}-\frac{1}{3}+\cdots$ converge?

$$
\frac{1-11}{\eta_{0}}+\frac{\frac{1}{2}-\frac{1}{2}}{u_{0}}+\frac{\frac{1}{2}-\frac{1}{2}}{u_{0}}+\frac{\frac{1}{3}-\frac{1}{3}}{n_{0}^{1}}+\frac{\frac{1}{3}-\frac{1}{3}}{n_{0}}+\frac{1}{3}-\frac{1}{3}+\cdots \rightarrow 0
$$

But $1-1+\frac{\frac{1}{2}+\frac{1}{2}}{y_{1}} \frac{\frac{1}{2}-\frac{1}{2}}{-1}+\frac{\frac{1}{3}+\frac{1}{3}+\frac{1}{3}}{1}-\frac{\frac{1}{3}-\frac{1}{3}-\frac{1}{3}}{-1}+\cdots$
fluctuates between $1,0,1,0, \ldots$
Def: Let $\sum a_{n}$ be a convergent sequence.
If $\sum\left|a_{n}\right|$ also converges, we say that $\sum a_{n}$ converges absolutely. If $\Sigma\left|a_{n}\right|$ doesn't converges, we say that Σa_{n} converges conditionally.

Rearrangement
$\sum a_{i}$ converges absolutely, so $\exists N \in \mathbb{N}$ such that $n>N \Rightarrow \sum_{i=n}^{\infty}\left|a_{i}\right|<\varepsilon$. $\sum a^{\prime} \sigma(i)$ is a rearrangement of $\sum a_{i} \Rightarrow\left|\sum_{j=h}^{m} a_{j}^{\prime}\right|<\varepsilon$ for n large enough
(pf) Let $S=\{\sigma(i) \mid i=1, \cdots, N\}$. Take $M=\max S+1$
Then $n>M \Rightarrow \sum_{\sigma(i)=M}^{\infty}\left|a_{\sigma(i)}^{\prime}\right|<\sum_{n=N}^{\infty}\left|a_{i}\right|<\varepsilon_{\#}$
Product
$\sum a_{n}, \sum b_{n}$ converges absolutaly, $\quad c_{n}=\sum_{i=0}^{n} a_{i} b_{n-i}, \Rightarrow \sum c_{n}$ converges.
(pf) $\quad a_{1} b_{1} a_{2} b_{1} a_{3} b_{1} a_{4} b_{1} \cdots$

Limit of Function
Def:
Prop. Limit of Sequence meets limit of function

$$
\lim _{x \rightarrow p} f(x)=L \Leftrightarrow \forall x_{x_{p}} \longrightarrow p, f\left(x_{n}\right) \longrightarrow L .
$$

Prop If f is continuous, then $f\left(\lim _{n \rightarrow \infty} x_{n}\right)=\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ as $x_{n} \rightarrow p$
Collarary: If f, g are continuous, then $f+g, f \cdot g$ are continuous, and f / g is continuous if $g \neq 0$ at all x.

 $\Rightarrow\left(f^{-1}\left(u^{i}\right)\right)^{c}$ is a poen $\Rightarrow f^{-1}(u)$ as peen Smidar for ansther directisu. J. 14 (0as) impacor tk

Homeomorphism thm If $f: X \rightarrow Y$ is conti bijective on a compact set X, then f is a homeomorphism i.e f^{-1} is continuous.
pf. f^{-1} is continusus $\Leftrightarrow \forall$ chosed K in $X, f(K)$ is clozed in Y.
\forall chored K in X, K is compact. Suce f is conti, $f(k)$ is compact $\Rightarrow f(k)$ is closed
Cor. $[0,1]$ is not homeomerphic to \mathbb{R}^{\prime}.

Weierstrass the. If $f: X \rightarrow \mathbb{R}$ and f is coati. $X B$ compact. Then f achieves it maximanan and minimion pf. Since f is costs, X is compact, $f(x)$ B compact in R. By Heien-Borel, $f(x)$ is closed and banded
Bounded \Rightarrow sup f and inf exist

$$
C \text { closed } \Rightarrow \exists x \cdot r y \in X \quad s+f(x)=s u(f) \cdot f(y)=m f(f)
$$

Example in Economics: Consumer Theory
Suppose in a marley, there are n good $d_{1}, x_{1}, \cdots, x_{n}$ with price $p_{1}, \cdots, p_{n}>0$.
Every individual maximizes its unity under the budget constraint:

$$
\operatorname{Max}_{x_{1}, \cdots, x_{n}} U(x) \text { s.t. } \quad \sum p_{i} x_{i} \leq y
$$

If u(.) is continuous, then the maximization point exists, and the best consumption bundle is called the Mashatian demand.
(pf) Let $A=\left\{\left(x_{1}, \cdots, x_{n}\right) \mid 0 \leqslant \sum p_{i} x_{i} \leq y, x_{i} \geqslant 0\right\}$.
A is bounded: A is bounded by $\left[0, \frac{y}{p_{1}}\right] \times \cdots \times\left[0, \frac{y}{p_{n}}\right]$.
A is closed: Since $f=\sum p_{i} x_{\text {: }}$ is continuous, $f^{-1}([0, y])=A$ is closed.
Hence, by Heien-Borel Thin, A is compact.
By Weierstrass Them, 4 achieves its maximum.

