Online Math Camp (235) TA Session Note (5/1)

Complete Def: X is complete iff for any {an}, Cauchy sequence in X => {an} converges. Prop. IR is complete. (pf) Take {an}: Canchy (an) converges if lines an = limit an. <u>Claim</u>: | lines on - limit an | 52 4270 (if n > N(2)). $-\frac{1}{1}$ $+\frac{1}{1}$ ¥ 270, find No ∈ N such that if m, n > No, then | am - an | < 2 -(-+-) 9_N。 $\Rightarrow \sup_{N>N_0} Q_N \leq Q_{N_0} + \frac{\xi}{1}, \quad \inf_{n \neq N_0} Q_n \geq Q_{N_0} - \frac{\xi}{2}$ $\Rightarrow \left| \lim_{n \to 0} \sup_{n \to \infty} a_n - \lim_{n \to \infty} \sup_{n \to \infty} a_n - \inf_{n \to \infty} a_n \leq \left(\frac{q_N}{N_0} + \frac{z}{z} \right) - \left(\frac{q_N}{N_0} - \frac{z}{z} \right) \right|$

52 #

Examples:

$$\begin{cases} \lim \sup (-1)^{n} = ? \\ \lim \inf (-1)^{n} = ? \\ \lim \inf (-1)^{n} = ? \\ \lim \sup (-1)^{n} = ? \\ \lim \sup (-1)^{n} = nex \left\{ \lim \sup (1), \lim \sup (-1)^{n} \right\} \\ \lim \inf (-1)^{n} = \min \left\{ \lim \inf (1), \lim \inf (-1)^{n} \right\} \\ = -1 \end{cases}$$

Def: Given a sequence
$$\{a_n\}$$
, we say a series $\sum_{h=1}^{\infty} a_h$ converges
if the sequence $\{\sum_{i=1}^{\infty} a_i\}$ converges.
In the case, $\sum_{h=1}^{\infty} a_h = \lim_{h \to \infty} \sum_{i=1}^{\infty} a_i$

Cauchy Criterion
$$\forall 270, \exists No \in IN, \text{ such that } N > M > N_0, \Rightarrow$$
 $\sum_{i=1}^{n} q_i - \sum_{i=1}^{n} q_i < 2$ IIII $\sum_{i=1}^{n} q_i$ $\sum_{i=1}^{n} q_i$

Example:
$$\sum_{h=1}^{\infty} \frac{1}{h(n+1)} = ?$$

Trick: Find $a_1 b_2$ so that $\frac{1}{h(n+1)} = \frac{a_1}{h} + \frac{b_2}{h+1} = \frac{(a+b)n+1}{h(n+1)} \Rightarrow a=1, b=-1$
Hence, $\sum_{h=1}^{\infty} \frac{1}{h(n+1)} = \sum_{n=1}^{\infty} \left(\frac{1}{h} - \frac{1}{h+1}\right) = \left(1 - \frac{V}{h}\right) + \left(\frac{V}{h} - \frac{1}{3}\right) + \left(\frac{1}{h} - \frac{1}{4}\right) + \frac{1}{h(n+1)} = 1$.

$$\begin{aligned} \text{Linit-Sup:} \\ \text{lin sup } a_{n} &= \text{max} \left\{ \text{lint of subsequence} \right\} \\ \text{Prop. } \text{lin cup } a_{n} &= \text{lin} \left(\begin{array}{c} \sup \\ k \text{ on } n \end{array} \right) \\ &= \begin{array}{c} \inf \left(\begin{array}{c} \sup \\ k \text{ on } n \end{array} \right) \\ &= \begin{array}{c} \inf \left(\begin{array}{c} \sup \\ k \text{ on } n \end{array} \right) \\ &= \begin{array}{c} \inf \left(\begin{array}{c} \sup \\ k \text{ on } n \end{array} \right) \\ &= \begin{array}{c} (\text{Sketch of } P_{n-1}) \\ &= \begin{array}{c} 1. \exists a_{p_{n}} \rightarrow \text{linep } a_{n} \\ &= \begin{array}{c} \forall \text{ sup } a_{p_{n}} \\ &= \begin{array}{c} 1. \exists a_{p_{n}} \rightarrow \text{linep } a_{n} \\ &= \begin{array}{c} \forall \text{ sup } a_{p_{n}} \\ &= \begin{array}{c} 1 \\ k \text{ on } n \end{array} \right) \\ &= \begin{array}{c} \inf \left(\begin{array}{c} \sup \\ s \text{ on } n \end{array} \right), \\ &= \begin{array}{c} \inf \left(\begin{array}{c} \sup \\ s \text{ on } n \end{array} \right), \\ &= \begin{array}{c} \inf \left(\begin{array}{c} \sup \\ s \text{ on } n \end{array} \right), \\ &= \begin{array}{c} 1 \\ a_{k} - \text{linep } a_{n} \\ &= \end{array} \right) \\ &= \begin{array}{c} 1 \\ a_{k} - \text{linep } a_{n} \\ &= \end{array} \end{aligned}$$

2. If
$$\lfloor > linsyp$$
, then $\nexists a_{pn} \rightarrow U$.
 $pp) \exists n \in \mathbb{N}$, such that $sup a_n < L$.
 $\exists |a_k - L| > |sup a_n - L| \forall k > n \Rightarrow L cannot be the linst.$
3. Inf (some)

Def: f is continuous at p if

$$\forall \epsilon 70, \exists 5 70, such that d_m(x,p) < \epsilon \Rightarrow d_N(t | x ?, q) < \epsilon.$$

Def 1: f is continuous on M if f is continuous at every point $p \in M$.
Def 2: f is continuous on M if f preserves every convergence sequence, so that
the image of convergence sequences in M is a convergence sequence is M.
Thin: Def. 1 \iff Def. 2

Thin: Def. 1
$$\iff$$
 Def. 2
(pt) Suppose Def. 1. holds. $\forall \{a_n\} \rightarrow a \text{ in } M \xrightarrow{?} \Rightarrow f(a_n) \rightarrow f(a)$
Since f is continuous, f is continuous at a
 $\forall \$? ? , \exists \$ > 0$ such that $d_{M}(x, a) < \$ \Rightarrow d_{N}(f(x), f(a)) < \$$.
Since $\{a_n\}$ converges, $\exists N > 0$ such that $\forall h > N$.
 $d_{M}(a_n, a) < \vartheta \Rightarrow d_{N}(f(a_n), f(a)) < \$$
 $Hence, \{f(a_n)\} \rightarrow f(a)$, i.e. Def. 2 holds.
Suppose Def. 2 holds.
If Def. 1 closes not hold, then $\exists p \in M$ such that f is not continuous at p
i.e. $\exists \$ > 0$ such that $\forall \vartheta > 0$, $\exists \pi$ such that $d_{M}(x_1, p) < \vartheta$, but $d_{N}(f(x_1), f(p)) \geqslant \$$. $\Rightarrow \{x_n\} \rightarrow p$
However, $d_{N}(f(x_n), f(p)) \geqslant \$ > 0$ $\forall h \in N$ ($\rightarrow \in$)

Homeomorphism Def. f: M -> N is a homeomorphism if f is continuous, bijective, and 5 is also continuous. Def. If there exists a homeomorphism of between M and N, we says M is homeophorphic to N, or M = N. $\mathsf{Ex:} \ \Upsilon \cong \mathsf{T} \ \mathsf{O} \cong \Box \quad \mathfrak{o} \quad \mathfrak{m} \stackrel{\mathsf{Y}}{\leftarrow} \mathsf{C}$ EX: A coffee cup is homeomorphic to a donut.