Online Math Camp (23ふ) TA Session Note $(5 / 1)$

Cauchy Sequence
Ex: $x_{1}=1, \quad x_{2}=2, \quad x_{n}=\frac{1}{2}\left(x_{n-1}+x_{n-2}\right)$ is Cancly.
(pf) $\left|x_{1}-x_{2}\right|=1,\left|x_{2}-x_{3}\right|=\frac{1}{2},\left|x_{3}-x_{4}\right|=\frac{1}{4}, \cdots$
In general, $\left|x_{n}-x_{n-1}\right|=\left|\frac{1}{2}\left(x_{n-1}+x_{n-2}\right)-x_{n-1}\right|=\frac{1}{2}\left|x_{n-2}-x_{n-1}\right|$
Hence, $\left|x_{n}-x_{n-1}\right|=\frac{1}{2^{n-1}}$, and for $m>n$,

$$
\begin{aligned}
\left|x_{n}-x_{m}\right| & \leqslant\left|x_{n}-x_{n+1}\right|+\left|x_{n+1}-x_{n+2}\right|+\cdots+\left|x_{m-1}-x_{m}\right| \\
& =\sum_{i=1}^{m-1}\left|x_{i}-x_{i+1}\right|=\sum_{i=n}^{m-1} \frac{1}{2^{i-1}} \leqslant \sum_{i=n}^{\infty} \frac{1}{2^{i-1}}=\frac{1}{2^{n-2}}
\end{aligned}
$$

(Use $\varepsilon-\delta$ argument to finish...)

Complete
Def: X is complete ff for any $\left\{a_{n}\right\}$, Canchy sequence in $X \Rightarrow\left\{a_{n}\right\}$ converses.
Prop. \mathbb{R} is complete.
(pf) Take $\left\{a_{n}\right\}: C$ anchy. $\left\{a_{n}\right\}$ converges if $\operatorname{linsisp} a_{n}=\operatorname{lin}$ inf a_{n}.
Claim: $\left|\lim \operatorname{sip} a_{n}-\lim \inf a_{n}\right|<\varepsilon \quad \forall \varepsilon>0$ (if $n>N(\varepsilon)$).
$\xrightarrow{-\frac{i}{2}} \xrightarrow{+\frac{\varepsilon}{2}} \forall \varepsilon>0$, find $N_{0} \in \mathbb{N}$ such that if $m, n>N_{0}$, then $\left|a_{m}-a_{n}\right|<\frac{\varepsilon}{2}$.

$$
\begin{aligned}
& \Rightarrow \sup _{n>N_{0}} a_{n} \leqslant a_{N_{0}}+\frac{\varepsilon}{2}, \inf _{n>N_{0}} a_{n} \geqslant a_{N_{0}}-\frac{\varepsilon}{2} \\
& \Rightarrow\left|\limsup a_{n}-\operatorname{lin} \inf _{n} a_{n}\right| \leqslant\left|\sup _{n>N_{0}} a_{n}-\inf _{n>N_{0}} a_{n}\right| \leqslant\left|\left(a_{N_{0}}+\frac{\varepsilon}{2}\right)-\left(g_{N_{0}}-\frac{\varepsilon}{2}\right)\right| \\
& \leqslant \varepsilon \#
\end{aligned}
$$

Examples:

$$
\left\{\begin{array}{l}
\limsup (-1)^{n}=? \\
\lim \inf (-1)^{n}=?
\end{array} \quad(-1)^{n}= \begin{cases}1, & \text { if } n \text { even } \\
-1, & \text { if } n \text { odd } .\end{cases}\right.
$$

Since $\left\{\begin{array}{l}\operatorname{lin} \sup (-1)^{n}=\max \{\limsup (1), \operatorname{li} \sup (-1)\}, \\ \operatorname{lin} \operatorname{irf}(-1)^{n}=\min \{\operatorname{lininf}(1), \operatorname{li} \operatorname{in}(-1)\},\end{array} \quad\right.$ then are easy: $\{=1$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Series
Def: Given a sequence $\left\{a_{n}\right\}$, we say a series $\sum_{n=1}^{\infty} a_{n}$ converges if the sequence $\left\{\sum_{i=1}^{n} a_{i}\right\}$ converges.
In the care, $\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} a_{i}$
Cauchy Criterion

$$
\forall \varepsilon>0, \exists N_{0} \in \mathbb{N} \text {, sud thor } n>m>N_{0}, \Rightarrow \frac{\left|\sum_{i=1}^{n} a_{i}-\sum_{i=1}^{m} a_{i}\right|<\varepsilon}{\left|\sum_{i=m+1}^{n} a_{i}\right|}
$$

Example: $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=$?
Trick: Find a, b so that $\frac{1}{n(n+1)}=\frac{a}{n}+\frac{b}{n+1}=\frac{(a+b) n+1}{n(n+1)} \Rightarrow a=1, b=-1$
Hence, $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1-\frac{1}{2}\right)+\left(\frac{y}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+p+\cdots=1$.

Limit -Sup:

$$
\operatorname{lin} \sup a_{n}=\max \{\text { lint of subsequence }\}
$$

Prop. $\operatorname{limap}_{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty}\left(\sup _{k>n} a_{n}\right)=\inf \left(\begin{array}{l}\sup \\ k>n\end{array} a_{n}\right)$.
(Sketch of Prot)

1. $\exists a_{p_{n}} \rightarrow \operatorname{li} \alpha y a_{n}$
$\forall \varepsilon>0, \exists n \in \mathbb{N}$ such that $\sup _{k>n} a_{n} \in\left(\inf \left(\sup _{k>n} a_{n}\right), \inf \left(\sup a_{n}\right)+\varepsilon\right)$.
$\Rightarrow \exists k>n$ such that $a_{k} \in\left(\inf \left(\sup a_{n}\right), \sup \left(a_{n}\right)\right)$

$$
\Rightarrow\left|a_{k}-\operatorname{lin}_{\operatorname{stp}} a_{n}\right|<\varepsilon
$$

2. If $L>$ lis sp, then $\nexists a_{p_{n}} \rightarrow L$.
(pf) $\exists n \in \mathbb{N}$, such that $\sup _{k \rightarrow n} a_{n}<L$.
$\Rightarrow\left|a_{k}-L\right|>\left|\sin a_{n}-L\right| \quad \forall k>n \Rightarrow L$ camus be the limit.
3. Inf (same).

Preview of Next Weak
Limit of Functions \& Continuity

$$
f(x)=\left\{\begin{array}{rlr}
1, & x \geqslant 0 \\
-1, & x<0 & \text { for } a_{1}=1, \quad a_{2}=-\frac{1}{2}, \quad a_{3}=\frac{1}{3}, a_{4}=-\frac{1}{4}, \cdots \\
f\left(a_{1}\right)=1, f\left(a_{2}\right)=-1, & f\left(a_{3}\right)=1,-\left(a_{4}\right)=-1, \cdots
\end{array}\right.
$$

Def: $\lim _{x \rightarrow p} f(x)=q$ if $\forall \varepsilon>0, \exists \delta>0$ such that $d_{M}(x, p)<\delta, \Rightarrow d_{N}(f(x), q)<\varepsilon$ EX: $f(x)=x: \lim _{x \rightarrow 2} f(x)=2$.
(pf) $\forall \varepsilon>0$, let $\delta=\varepsilon$, then $|x-2|<\delta \Rightarrow|f(x)-2|=|x-2|<\delta=\varepsilon$

Def: f is continuous at p if
$\forall \varepsilon>0, \exists \delta>0$, such that $\left.d_{M}(x, p)<\delta \Rightarrow d_{N}(f \mid x), q_{\delta}\right)<\varepsilon$.
Def 1: f is continuous on M if f is continuous at every point $p \in M$.
Def 2: f is continuous on M if f preserves every convergence sequence, so that the image of convergence sequences in M is a convergence sequence in N.

The: Def. $1 \Leftrightarrow$ Def. 2

The: Def. $1 \Leftrightarrow$ Def. 2
(pf) Suppose Def. 1. holds. $\forall\left\{a_{n}\right\} \rightarrow a$ in $M ? \Rightarrow f\left(a_{n}\right) \rightarrow f(a)$
Since f is continuous, f is continuous at a $\forall \varepsilon>0, \exists \delta>0$ such that $d_{M}(x, a)<\delta \Rightarrow d_{N}(f(x), f(a))<\varepsilon$.
Since $\left\{a_{n}\right\}$ converges, $\exists N>0$ snob that $\forall n>N$,

$$
\begin{aligned}
& d_{M}\left(a_{n}, a\right)<\delta \Rightarrow d_{N}\left(f\left(a_{n}\right), f(a)\right)<\varepsilon \\
& \text { Hence, }\left\{f\left(a_{n}\right)\right\} \rightarrow f(a), \text { i.e. Def. } 2 \text { holds. }
\end{aligned}
$$

Suppose Def. 2 holds.
If Def. 1 does nut hold, then $\exists p \in M$ such that f is not continuous at p. i.e. $\exists \varepsilon>0$ sud that $\forall \delta>0, \exists x$ such that $d_{M}(x, p)<\delta$, but $d_{N}(f(x), f(p) \geqslant \varepsilon$. Let $\delta_{n}=\frac{1}{n}, \exists x_{n}$ such that $d_{M}\left(x_{n}, p\right)<\frac{1}{n}$, but $d_{N}\left(f\left(x_{n}\right), f(p)\right) \geqslant \varepsilon . \Rightarrow\left\{x_{n}\right\} \rightarrow p$. However, $d_{N}\left(f\left(x_{n}\right), f(p)\right) \geqslant \varepsilon>0 \quad \forall n \in \mathbb{N}(\rightarrow \leftarrow)$

Homeomorphism
Def: $f: M \rightarrow N$ is a homeomorphism if f is continuous, bijective, and f^{-1} is also continuous.
Def: If there exists a homeomorphism f between M and N, we says M is homeoporphic to N, or $M \cong N$.
$E x: Y \cong T . O \cong \square$

EX: A coffee cp is homeomorphic to a donut.

