Online Math Camp (23ふ) TA Session Note ($4 / 23$)

Sequences
Def: $\left\{p_{n}\right\}$ is a sequence, and $\lim _{n \rightarrow \infty} p_{n}=p$ mean " $\forall \varepsilon>0, \exists N \in \mathbb{N}$ such that $n>N \Rightarrow d\left(p_{n}, p\right)<\varepsilon$."

Prop. 1: $\left\{p_{n}\right\}$ converges $\Rightarrow\left\{p_{n}\right\}$ is bounded.
(pf) By def., $\exists N \in \mathbb{N}$ such that $n>N \Rightarrow d(p n, p)<{ }^{\prime \prime} 1$ ".
$\Rightarrow\left\{p_{n}\right\} \subseteq\left\{p_{1}, \cdots, p_{N}\right\} \cup[p-1, p+1]$, bounded $\Rightarrow\left\{p_{n}\right\}$ is bonded.
Prop. 2: $\lim _{n \rightarrow \infty} p_{n}=p, \lim _{n \rightarrow \infty} p_{n}=p^{\prime}$, Then $p=p^{\prime}$
(pf) Suppose $P \neq p^{\prime}$, tale $\varepsilon=\frac{1}{2} d\left(P, P^{\prime}\right)$, then you can find $N_{1}, N_{2} \in \mathbb{N}$ such that $\left\{\begin{array}{l}n>N_{1} \Rightarrow d\left(p_{1}, p_{n}\right)<\varepsilon \\ n>N_{2} \Rightarrow d\left(p_{1}^{\prime} p_{n}\right)<\varepsilon\end{array} \quad \Rightarrow\right.$ For $N=\max \left\{N_{1}, N_{2}\right\}$, such that
Hence, $d\left(p, p^{\prime}\right) \leq \varepsilon+\varepsilon^{\left.\text {(triangul/ } i_{q}\right)}=2 \varepsilon=d\left(p, p^{\prime}\right)(\rightarrow t)$

Prop, 3: If E contains a limit point p.
Then $\exists\left\{p_{n}\right\} \in E$ such that $\lim _{n \rightarrow \infty} p_{n}=p$.
($1+f$) $\forall n \in \mathbb{N}$, pick p_{n} such that $\quad d\left(p_{n}, p\right)<\frac{1}{n} . \Rightarrow \lim _{n \rightarrow \infty} p_{n}=p$
Arithmetic of Sequences

$$
\text { 1. }\left\{\begin{array}{l}
a_{n} \rightarrow a \\
b_{n} \rightarrow b
\end{array} \Rightarrow a_{n}+b_{n} \rightarrow a+b\right.
$$

(pf) $\forall \varepsilon>0, \exists N_{1}, N_{2} \in \mathbb{N}$ such that $\left\{\begin{array}{l}n>N_{1} \Rightarrow\left|a_{n}-a\right|<\frac{\varepsilon}{2} \\ n>N_{2} \Rightarrow\left|b_{n}-b\right|<\frac{\varepsilon}{2}\end{array}\right.$
Hence, for $N=\max \left\{N_{1}, N_{2}\right\}, \quad\left|\left(a_{n}+b_{n}\right)-(a+b)\right| \leqslant\left|a_{n}-a\right|+\left|b_{n}-b\right|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$,
2. $\left\{\begin{array}{l}a_{n} \rightarrow a \\ b_{n} \rightarrow b\end{array} \Rightarrow a_{n}-b_{n} \rightarrow a-b\right.$
(p) Use $\left|\left(a_{n}-b_{n}\right)-(a-b)\right| \leqslant\left|a_{n}-a\right|+\left|b-b_{n}\right|<\varepsilon \quad$ (triangular inequality) (Sane as 1.)
3. $a_{n} \rightarrow a, c: c o n s t a n t \Rightarrow c \cdot a_{n} \rightarrow c \cdot a$.
($p f$) If $c=0$, Trivial.
If $c \neq 0, \forall \varepsilon>0, \exists N \in \mathbb{N}$ such that $\left|a_{n}-a\right|<\frac{\varepsilon}{|c|}$.
Then $\left|c \cdot a_{n}-c \cdot a\right|=|c| \cdot\left|a_{n}-a\right|<\varepsilon \neq$

$$
4_{1}\left\{\begin{array}{l}
a_{n} \rightarrow a \\
b_{n} \rightarrow b
\end{array} \Rightarrow a_{n} \cdot b_{n} \rightarrow a \cdot b\right.
$$

(pd) Use $\left|a_{n} b_{n}-a b\right|=\left|b_{n}\left(a_{n}-a\right)+\underline{a}\left(b_{n}-b\right)\right| \leqslant\left|b_{n}\right| \cdot\left|a_{n}-a\right|+|a| \cdot\left|b_{n}-b\right|$

$$
<B \cdot\left|a_{n}-a\right|+|a| \cdot\left|b_{n}-b\right|:
$$

$\left\{b_{n}\right\}$ converges $\Rightarrow\left|b_{n}\right|<B$ for sone $B>0$

Then, ...
5. $a_{n} \neq 0 \quad \forall n \in \mathbb{N},\left\{a_{n}\right\} \rightarrow a \neq 0 . \quad \Rightarrow \frac{1}{a_{n}} \rightarrow \frac{1}{a}$.
(pf) $\left|\frac{1}{a_{n}}-\frac{1}{a}\right|=\left|\frac{a-a_{n}}{a \cdot a_{n}}\right| \leqslant\left|\frac{1}{a}\right| \cdot\left|\frac{2}{a}\right|\left|a-a_{n}\right|$ since $\left|\frac{1}{a_{n}}\right| \leqslant\left|\frac{2}{a}\right| \Leftrightarrow\left|a_{n}\right| \geqslant\left|\frac{a}{2}\right|$ (the for $n \geqslant \underline{N}_{1}$)
$\exists N_{1}$ such then $\left|a_{n}-a\right| \leq \frac{|a|}{2} \Rightarrow\left|a_{n}\right| \leq\left|a_{n}-a\right|+|a|=\frac{3}{2}|a|$

Example:

1. $\frac{3 n}{n+2}=\frac{3}{1+\frac{2}{n}} 3$
(since $n+2>N+2>\frac{6}{\varepsilon}+2>\frac{6}{\varepsilon}$)
(pt) $\forall \varepsilon>0, \exists N>\frac{6}{\varepsilon}$. such that $n>N \Rightarrow\left|\frac{3 n}{n+2}-3\right|=\left|\frac{6}{n+2}\right|<\left|\frac{6}{\frac{6}{\varepsilon}}\right|=\varepsilon$ *
2. $\left(\frac{3 n}{n+2}\right)^{2} \rightarrow 9$
(pf) Flan: Want to show $\left|\frac{9 n^{2}}{n^{2}+4 n+4}-9\right|=9 \cdot\left|\frac{1}{1+\frac{4}{n}+\frac{4}{n^{2}}}-1\right|=9 \cdot\left|\frac{\frac{4}{n}+\frac{4}{n^{2}}}{1+\frac{4}{n}+\frac{4}{n^{2}}}\right|$

$$
<q \cdot\left|\frac{4}{n}+\frac{4}{n^{2}}\right| \leqslant\left|\frac{8}{n}\right|<\varepsilon
$$

(The rest is HW)
3. $p>1 \Rightarrow p^{\frac{1}{n}} \rightarrow 1$.
(pt) Let $p^{\prime}=p-1 \Rightarrow\left(1+p^{\prime}\right)^{\frac{1}{n}} \leqslant 1+\frac{p^{\prime}}{n}$ by Bermili inequality.
4. $n^{\frac{1}{n}} \rightarrow 1$.

$$
\text { [let } \left.n^{\frac{1}{n}}=1+k \Rightarrow(1+k)^{n}=1+n k+\frac{n(n-1)}{2} k^{2}+\ldots>\frac{n(n-1)}{2} k^{2}>\frac{(n-1)^{2}}{2} k^{2}>n\right]
$$

(pt) $\forall \varepsilon>0, \exists N>\frac{2}{\varepsilon^{2}}+1,(1+\varepsilon)^{n}>n$ if $n>\mathbb{N} \Rightarrow\left|n^{\frac{1}{n}}-1\right|<\varepsilon$.

Theorem $\left\{p_{h}\right\}$ is hounded \& monotone $\Rightarrow\left\{p_{h}\right\}$ converges
pop. $\left\{a_{n}\right\}$ bounded is $\mathbb{R} \Rightarrow \exists$ subsequence $\left\{a_{n}^{\prime}\right\} \subseteq\left\{a_{n}\right\}$ that converges (pt) $\left\{a_{n}\right\}$ bounded $\Rightarrow\left\{a_{n}\right\} \subseteq \operatorname{Br}(0)$ for sone $r>0$.

Since $\operatorname{Br}(0)$ is compact, $\left\{a_{n}\right\}$ has a limit point. $\Rightarrow \exists\left\{a_{n}^{\prime}\right\} \subseteq\left\{a_{n}\right\}$ that converges.

Preview of Next Week Monotone Convergence Theorem
Every bounded and monotive sequence converges to its limits. If a_{n} is $\left\{\begin{array}{l}\text { increasing }(\mathcal{J}),\left\{a_{n}\right\} \text { converges to its }\left\{\begin{array}{l}\text { sup. } \\ \text { decreasing }(\nu)\end{array}\right. \\ \text { inf. }\end{array}\right.$
(pt) Suppose $a_{n} r$.
Since $\left\{a_{n}\right\}$ is bounded \& nonempty, sup $a_{n}=a$ exists by lu. b property. i. en $\forall \varepsilon>0, \exists N \in \mathbb{N}$ such the $a-a n<\varepsilon \forall n>N$.
(Sine otherwise $a-\varepsilon$ would be the true I.u.b.)
Hence, $\left|a-a_{n}\right|<\varepsilon \quad \forall n>N \Rightarrow \lim _{n \rightarrow \infty} a_{n}=a$.
Suppose $a_{n} \downarrow$,
Since $\left\{a_{n}\right\}$ is bounded \& nonempty, inf $a_{n}=a$ exists by g.1.b. poopernyy. i. en $\forall \varepsilon>0, \exists N \in \mathbb{N}$ snot that $a_{n}-a<\varepsilon \forall n>N$.
(rime otherwise $a+\varepsilon$ would be the true g.l.b,)
Hence, $\left|a-a_{n}\right|<\varepsilon \quad \forall n>N \Rightarrow \operatorname{lin} a_{n}=a$.

Complete Space \& Completion Theory
Converge seq. \Rightarrow Cauchy sequence.
But Cauchy sequence converging sequence.
$E X:$ In $Q, 3,3.1,3.14,3.141, \cdots \rightarrow \pi \& Q$.
Def: X is a Complete Metric Space iff
Every Cauchy sequence converges in X.
Properties: 1. Compact spaces are complect.
2. Closed subspaces of compact spaces are complete.
3. Q is not complete.
4. \mathbb{R}^{n} is complete.

Completion Theory
Every metric space can be completed.
If M can be completed to \hat{M}, then M is a dense metric subspace of M.
Example: $\quad(0,1) \rightarrow[0,1]$

$$
\mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}
$$

$Q \longrightarrow \mathbb{R}:$ Add $\left\{q_{n}: q_{n}^{2}<2\right\} \rightarrow \sqrt{2}$, et.
$\mathbb{R}^{2} \backslash\{p, q\} \longrightarrow \mathbb{R}^{2}:$ Add $\left\{a_{n} \rightarrow p\right\} \longrightarrow p$

Equivalence
Let d be the collection of Cauchy sequences in M.

$$
\begin{aligned}
& \forall\left\{a_{n}\right\},\left\{b_{n}\right\}, d\left(\left\{a_{n}\right\},\left\{b_{n}\right\}\right)=\lim _{n \rightarrow \infty}\left|a_{n}-b_{n}\right| \\
& \Rightarrow\left\{a_{n}\right\} \sim\left\{b_{n}\right\} \text { if } d\left(\left\{a_{n}\right\},\left\{b_{n}\right\}\right)=0 .
\end{aligned}
$$

Let $\hat{M}=C / \sim$ (call $p \sim q$ are the same point).

1. d is a well-detined metric on \hat{M}. Note that we change d to
2. $M \subseteq \hat{M}$. $D\left(\left[\left\{p_{n}\right\}\right],\left[\left\{q_{n}\right\}\right]\right)=\lim _{n \rightarrow \infty}\left|p_{n}-q_{n}\right|$
3. \hat{M} is complete. (For proof, see Pugh, P.119-121)
4. Uniqueness

Limit -Sup
$\limsup _{n \rightarrow \infty} a_{n}=\sup \left\{\right.$ subsequence limits of $\left.a_{n}\right\}=\lim _{n \rightarrow \infty} \sup _{k \geqslant n} a_{n}$
Example: $\left\{b_{n}\right\}=\left\{1,-1, \frac{1}{2},-1, \frac{1}{3},-1, \frac{1}{4}, \cdots\right\}, 1, \frac{1}{2}, \frac{1}{3}, \cdots \rightarrow 0$
$\lim _{n \rightarrow \infty} \sup b_{n}=0, \lim _{n \rightarrow \infty} \inf b_{n}=-1$.

1. $\lim \operatorname{sip} a_{n}+\operatorname{lin} \sup . b_{n} \neq \operatorname{li} \sup \left(a_{n}+b_{n}\right)$

Counter - example:

$$
\begin{array}{lll}
e: \quad 1,-1,1,-1, \cdots & \lim _{n \rightarrow \infty} \sin =1 \\
+\quad-1,1,-1,1, \cdots & \lim _{n \rightarrow \infty} \sup =1 \\
\hline 0,0,0,0, \cdots & \lim _{n \rightarrow \infty} \sup =0
\end{array}
$$

2. $c \cdot\left[\lim _{n \rightarrow \infty} a_{n}\right]=\limsup _{n \rightarrow \infty}\left(c \cdot a_{n}\right)$ if $c>0$

But if $c=-1, c \cdot\{1,-1,1,-1, \cdots\}$ becomes $\{-1,1,-1,1, \cdots-1\}$, but both have $\lim _{h \rightarrow \infty} \sup =1$
3. $\lim _{n \rightarrow \infty} a_{n}$ exists iff $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \inf a_{n}$.

