Online Math Camp (233) TA Session Note (4/17) (Quiz 7 Solution)

(25 pts) Define "C is a connected set in the metric space X".
 Def: A set C is connected if C is not an union of two non-empty, separated set.
 Or, ∄ non-empty A, B ∈ C such that AOB = \$\$, BAA = \$\$.

- 2. (1) (25 pts) State Heine-Borel theorem.
 - (2) (20 pts) Is ([a, b], d) compact where d denotes the discrete metric? Why you cannot use Heine-Borel in this case?

3. (24 pts) Prove that if a set is compact, then every infinite subset has a limit point.

[H: compact.
$$S \subseteq H$$
 is an infinite subset.
W.T.S. S has a limit point.
(pt) If not, S has no limit point.
 \Rightarrow For $\pi \in S$, $\exists N_{6x}(x)$ such that $N_{5x}(x) \cap S = \{x\}$
Consider $\{S^{C}, \{N_{5x}(x) | \forall x \in S\}\}$ of H ,
which has no finite subcover $\Rightarrow H$ is not compact (-26)

4. (24 pts) Show that the Cantor set is perfect, that is, closed and with no isolated point.

(i) Cantor set F is closed,
(pt)
$$F = \bigcap_{i=1}^{n} F_i$$
 is closed since Fi is closed $\forall i$.
(ii) Cantor set F has no isolated point.
(pt) Take $x \in F$, consider $(x - \xi, x + \xi)$, $\exists N \in \mathbb{N}$ such that $\frac{1}{3^N} < \xi$
Define $M = \max \{m \mid \frac{m}{3^N} < \pi\} \Rightarrow [\frac{M}{3^N}, \frac{M+1}{3^N}] \leq (\pi - \xi, \pi + \xi)$
(i) $\pi \in [\frac{M}{3^N}, \frac{3M+1}{3^{M+1}}]$ implies that $\exists c \neq \pi$ such that $c \in F$.
(ii) $\pi \in [\frac{3m+2}{3^{M+1}}, \frac{M+1}{3^N}]$ implies that $\exists c \neq \pi$ such that $c \in N_2(\pi)$

closure of 2

5. (20 pts) Prove that, if C is connected, then \overline{C} is also connected. How about the inverse?