Online Math Camp (23ふ) TA Session Note (4/17) (Quiz 7 Solution)

1. (25 pts) Define " C is a connected set in the metric space X ".

Def: A set C is connected if C is not an union of two non-empty, separated set.
Or, A nonempty $A, B \in C$ such that $A \cap \bar{B}=\phi, B \cap \bar{A}=\phi$.
2. (1) (25 pts) State Heine-Borel theorem.
(2) (20 pts) Is $([a, b], d)$ compact where d denotes the discrete metric? Why you cannot use Heine-Borel in this case?
(1) In \mathbb{R}^{n}, K is compact iff K is closed \& bounded.
(2) $([a, b], d)$ is not compact.

Consider $\quad\left\{N_{1}(x) \mid \forall x \in[a, b]\right\}$.
Since $N_{1}(x)=\{x\}$, it has no finite subcover.
We cannot use Heine-Borel since $([a, b], d)$ is not in $\mathbb{R}^{?}$?
3. (24 pts) Prove that if a set is compact, then every infinite subset has a limit point.
H : compact. $\quad S \subseteq H$ is an infinite subset.
W.T.S. इ has a limit point.
(pt) If not, S has no limit point.
\Rightarrow For $x \in S, \exists N_{\varepsilon x}(x)$ such that $N_{\varepsilon_{x}}(x) \cap S=\{x\}$
Consider $\left\{د^{c},\left\{N_{\varepsilon_{x}}(x) \mid \forall x \in S\right\}\right\}$ of H,
which has no finite subcover $\Rightarrow H$ is not compact $(\rightarrow \in)$
4. (24 pts) Show that the Cantor set is perfect, that is, closed and with no isolated point.
(i) Cantor set F is closed.
(pf) $F=\bigcap_{i=1}^{\infty} F_{i}$ is closed since F_{i} is closed \forall_{i}.
(ii) Cantor set F has no isolated point.
(pf) Take $x \in F$, consider $(x-\varepsilon, x+\varepsilon), \exists N \in \mathbb{N}$ such that $\frac{1}{3^{N}}<\varepsilon$
Define $M=\max \left\{m \left\lvert\, \frac{m}{3^{N}}<x\right.\right\} \Rightarrow\left[\frac{M}{3^{N}}, \frac{M+1}{3^{N}}\right] \subseteq(x-\varepsilon, x+\varepsilon)$
(i) $x \in\left[\frac{M}{3^{N}}, \frac{3 M+1}{3^{N+1}}\right]$
(ii) $x \in\left[\frac{3 M+2}{3^{N+1}}, \frac{M+1}{3^{N}}\right]$
\sum implies that $\exists c \neq x$ shelL that $c \in F$. $\& c \in N_{\varepsilon}(x) \nexists$
\rightarrow closure of C
5. (20 pts) Prove that, if C is connected, then \bar{C} is also connected. How about the inverse?
(pf) $\bar{C}=A \cup B, A$ and B are separated. Claim: Either A or B is empty.
We know $C \subseteq \bar{C}=\underline{A \cup B} . \Rightarrow C=(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$
Since $A \cap C$ \& $B \cap C$ are separated and C is connected, either $A \cap C$ or

$$
\begin{aligned}
& B \cap C \text { is empty. } \\
& \text { If } A \cap C=\phi \Rightarrow C=B \cap C \text { since } C=(A \cap C) \cup(B \cap C) \\
& \Rightarrow C \subseteq B \Rightarrow \bar{C} \subseteq \bar{B}
\end{aligned}
$$

Then $A=A \cap(A \cup B)=A \cap \overline{(} \subseteq A \cap \bar{B}$ (since $\bar{C} \subseteq \bar{B})$ $=\phi \quad$ (since $A \& B$ are separated).
(Inverse) Let $C=[0,1] \backslash\left\{\frac{1}{2}\right\}$,
$己$ is connected, but C is not. $(\longrightarrow \leftarrow)$

