Online Math Camp (233) TA Session Note (4/10)

Compactness

Def: K is compact iff

$$\forall \text{ open cover of } K, \cup U_d (\supseteq K)$$

 $\exists \text{ finite subcover } \cup U_d, A' \subseteq A \text{ is finite, such that } \cup U_d' \supseteq K.$
Intuition: When f is continuous on compact set K
 $\forall 1 \forall 2 \forall 0, \exists 5 \Rightarrow 0 \text{ such that } |x - x'| < 5 \Rightarrow |f(x) - f(x)| < 5$
Set $1 > 0$, for each point $x_0 \in K$, can find $\delta(x_0)$ such that
 $|f(x) - f(x_0)| < 1 \Rightarrow These open balls (x_0 - \delta(x_0), x_0 + \delta(x_0))$ covers K.
 $\Rightarrow Need only finite cubset of this to cover $K \Rightarrow |f(x)| < 1x_0 > 1 \ge N$.$

Examples:
1. (0,1) is not compact:
$$\left(\frac{1}{h}, 1-\frac{1}{h}\right) \leq (0,1)$$
 $\forall n, 23,$
 $\Rightarrow \bigcup_{n \in \mathbb{N} \setminus \{1,2\}} \left(\frac{1}{n}, 1-\frac{1}{h}\right) \geq (0,1), \text{ but no finite subset covers (0,1)}.$

2. empty set is compact since any cover would contain it!

Proposition:
$$5$$
 is compact $\Rightarrow 5$ is bounded.
(pt) Suppose 5 is not bounded in (X, d) .
Pick $p \in X$ and open ball $Nn(p)$ for $n \in IN$ such that $\bigcup_{n \in N} Nn(p) \ge 5$.
For any finite subcover $\bigcup_{n' \in A} N_{n'}(p)$, there exists a maximal in A , a ,
such that $\bigcup_{n' \in A} N_{n'}(p) = N_{a}(p) \ddagger 5$ since 5 is not bounded.

Prop.
$$S$$
 is compact \Rightarrow S is closed.
(pf) Suppose S is not closed, then $\exists \ 2 \ 4 \ 5 \ as a limit point of S .
Consider open cover $\bigcup_{p \in S} N \frac{d(p, q)}{2}(p) \ge S$.
For all finite cover, $K = \bigcup_{p' \in S'} N \frac{d(p', q)}{2}(p')$, pick $r \in K$,
 $d(r, q) \ge d(p', q) - d(r, p')$ (triangular in equality)
 $> d(p', q) - \frac{d(p', q)}{2} = \frac{d(p', q)}{2} \ge \min_{p' \in S} \frac{d(p', q)}{2} = \overline{k}$
But since g is a limit point of S ,
there exists $r' \in S$ such that $d(r', q) < \overline{k} \Rightarrow r' \notin K$.$

Prop. For
$$K \subseteq Y \subseteq X$$
, K is compact in $X \Rightarrow K$ is compact in Y .
 $K \subseteq (X, d)$
 $K \subseteq (Y, d)$
 Cpt
(pf) For any open cover $U = U_{\alpha} \subseteq K$, $U_{\alpha} \in Y \subseteq X$
 $d \in A$
 \exists finite subcover $U = U_{\alpha'} \subseteq K$ since K is compact in X .
 $K' \in A'$
 $Hence, K is compact in Y. #$

Prop. Any closed subset of a compact set is closed.
(PD) Consider
$$F \subseteq K$$
, F : closed, K : compact.
For any open cover $\bigcup \bigcup d$ of F , $(\bigcup \bigcup d) \bigcup F^{C}$ is an open cover of K .
Since K is compact, \exists finite subcover $(\bigcup \bigcup d) \cup F^{C}(\supseteq K)$
 $\Rightarrow \bigcup \bigcup d'(\supseteq F)$ is a finite subcover of \overline{A} .