Online Math Camp (233) TA Session Note (4/10) (Quiz 6 Solution)

1. (25 pts) Define "K is a compact set in the metric space X".

(pf) For any open

- 1. (25 pts) Define "K is a compact set in the metric space X".
- 2. (15 pts each) Is the set S compact in X? Proofs are needed.
 - (i) $X = \mathbb{R}^2$. S is (ii) S is an empty (iii) $X = \mathbb{R}^5$. S is
- 3. (24 pts) Given X tand only if K is co
- 4. (24 pts) Let F be a
- 5. (20 pts) Let $K = \frac{1}{2}$ Theorem.

2. S compact (i) $N_r(x) \subset \mathbb{R}^2$: Let $r_n = \frac{n}{n+1}r \Rightarrow \bigcup N_{r_n}(x)$ is (=)) Assume K is comp Let Va=YAUA an open cover of Nr(x) that does not have finite is compact, 3V Subcover $\Rightarrow Nr(x)$ is not compact. K is compact in Y if finite abover of t (E) Assume. K $(ii) \not \! \! p : (es)$ $\exists M_{\mathcal{X}} \cap K$ is a compact set. (iii) X C Rs, finite. : Yes out using Heine-Borel

3. (24 pts) Given X being a metric space and $K \subset Y \subset X$. Prove that K is compact in Y if and only if K is compact in X.

4. (24 pts) Let F be a closed set and K be a compact set. Prove that $F \cap K$ is a compact set.

(pf) K is compact
$$\Rightarrow$$
 K is closed.
 \Rightarrow FNK is closed, & in a compact set K.
 \Rightarrow FNK is compact (by Proposition).

5. (20 pts) Let $K = \{0\} \cup \left\{ \frac{1}{n} \middle| n \in \mathbb{N} \right\}$. Prove that K is compact without using Heine-Borel Theorem. (pf) Let {Ua} be an open cover of K ∃ G ∈ {U2} such that o ∈ G, and \exists sufficient large m such that $N_{\pm}(0) \subseteq G$. Let Gn be a set such that Gn E { U2 } h E Gn Then {G, G, G2, ..., Gm-1} is a finite subcover of K. =) Ic is compact. to