Online Math Camp (235) TA Session Notes (3/27)

Open Sets
Intuition: "something hear"
In Calculus, we define
$$\lim_{x \to a} f(x) = \bigcup_{x \to a} as:$$

 $\forall \epsilon > 0, \exists \delta > 0, such that $\forall 0 < |x'-x| < \delta, \Rightarrow |f(x') - f(x)| < \epsilon$
 $x' \in N_{\delta}(x) \Rightarrow f(x') \in N_{\epsilon}(f(x))$$

Def: A set U is open
iff
$$\forall x \in U$$
, $\exists r > 0$, such that $N_r(\pi) = \{x' \mid d(x', \pi) < r\} \subseteq U$.

Closed Sets

Intuition:
$$\{An\} \subseteq F$$
, closed, converges. $\Rightarrow \lim an \in F$.
Def: Fi is closed iff all limit points of Fi lies in Fi.
 F is a limit point iff $\forall \delta > 0$, $\exists x \in F$ such that $x \in N_{\delta}(p)$.

Examples of Open & Closed Sats
1.
$$N_{r}(x) = \{x' \mid d(x', \pi) < r\}$$
 is open
(pf) For all $\pi' \in N_{r}(\pi)$, take $r' = r - d(\pi, \pi')$. We want to show:
 $N_{r'}(\pi') \subseteq N_{r}(\pi)$ $\iff \forall x'' \text{ with } \frac{d(x'', x') < r'}{\mathcal{D}} \Rightarrow \frac{d(x'', x) < r}{\mathcal{D}}$
 $\pi'' \in N_{r'}(x') = \pi'' \in N_{r}(\pi)$
Since $d(\pi'', \pi) \leq d(\pi'', \pi') + d(x', \pi) < r' + d(x', \pi) = r$, we are done. π

Proposition 1. Finite intersections of open sets are open.
(pt)
$$U_i$$
 is open for $1 \le i \le n$. $\iff \forall \pi \in U_i$, $\exists r_{i,\pi} > o$ such that $N_{r_{i,\pi}}(x) \le U_i$
We want to show $\bigcap_{i=1}^{n} U_i$ is open
 $\iff \forall \pi \in \bigcap_{i=1}^{n} U_i$, $\exists r > o$, s.t. $N_r(w) \le \bigcap_{i=1}^{n} U_i$
Pick $r = \min_{i} r_{i,x}$, then $N_r(x) \le N_{r_{i,x}}(x) \le U_i$ Vi
 $\Rightarrow N_r(x) \le \bigcap_{i=1}^{n} U_i$
Remark: Some intersections of open sets are not open:
For example, $\bigcap_{n \in N} [-\frac{i}{n}, \frac{i}{n}] = \{o\}$ is closed,
 $Others are meither open, mer closed$

Proposition 2. Any union of open sets is open.