Online Math Camp (23ふ) TA Session Note ($3 / 27$) (Quiz 5 Solution)

1. (15 pts each) Give formal definitions to the following statements.
(i) U is an open set in a metric space X.
(ii) F is an closed set in a metric space X.
(See review note)
2. (12 pts each) Is the set S open in X ? Is it closed? Explanations are needed.
(i) $X=\mathbb{R}^{2} . S$ is some open ball $N_{r}(x)$ for $r>0$.
S is open by triangular in equality.
β is not closed. since the circle are limit points of $\}$, but not in S.
(ii) S is X itself.
$\forall p \in S, \forall N(p) \subset X=S \Rightarrow S$ is open.
\forall limit point of S are in $X=S \Rightarrow S$ is closed.
(iii) S is an empty set.

See review notes.
(iv) $X=\mathbb{R}^{5} . S$ is a nonempty finite set.
$\mathcal{S}=\left\{x_{1}, \cdots, x_{n}\right\}$. let $r=\min \left\{\left|x_{i}-x_{j}\right| \mid i \neq j\right\}$.
For $x, N_{r}(x) £ S . \quad \Rightarrow \nexists N_{g}(x) \subseteq S . \quad \Rightarrow S$ is not open.
Since S is finite, S has no limit point $\Rightarrow S$ is not closed.
3. (30 pts) Prove that S is open in X if and only if S^{c} is closed in X.
(\Rightarrow) If S is open. \forall limit point p in S^{c},

$$
\forall N_{r}(p) \exists q \in N_{r}(p) \text { such thar } q \neq p, q \in S^{c}
$$

$\Rightarrow P$ is not an interior point of S.
(Otherwise, $\exists N(p)$ subs the $N(p) \subseteq ふ \Rightarrow N(p) \cap ई^{c}=\phi$)
$\Rightarrow p \notin\} \Rightarrow p \in \zeta^{c}$, i.e. ζ^{c} is closed.
(\Leftrightarrow) If $इ^{c}$ is closed, $\forall p \in S, \Rightarrow p \not \Im^{c}$.
ie. p is not a limit point of S^{c}.
$\exists N(p)$ such that $N(p) \cap S^{c}=\phi$.

$$
\begin{aligned}
& \Rightarrow N(p) \subseteq S \\
& \text { io. } S \text { is open }
\end{aligned}
$$

4. (30 pts) Show that the union of any collection of open sets is open.
$\left\{V_{i}\right\}_{i \in 1}: V_{i}$ is open $\forall i$. claim $U_{i \in I} U_{i}$ is open,
(pf) $\forall p \in \bigcup_{i \in I} V_{i}, \exists t$ such that $p \in V_{t}$. (by definition of union).
Since V_{t} is open, $\exists N(p)$ such that $N(p) \subseteq V_{t} \subseteq \bigcup_{i \in I} V_{i}$.
Hence, $\bigcup_{i \in I} U_{i}$ is open.
5. (0 pts, don't do this unless you have time) Prove that a bounded closed set of real numbers contains its supremum and infimum.

Bounded Closed set $A \subseteq \mathbb{R} . \quad$ Claim: $\sup A=a \in A$, $\inf A=b \in A$.
(pf) Suppose $a \notin A$. (show that a is a limit point to get contradiction)
If a is not a limit point of A, then $\exists(a-\varepsilon, a+\varepsilon) \cap A=\phi$.
\Rightarrow Either "a-غ is an upper bound of A " or " a is an upper bound of A ".

If $A_{2} \subseteq A_{1}$, then a is not upper bound
If $A_{2} \& A$, then any point in $(a-\varepsilon, a+\varepsilon)$ is an upper bound.
\Rightarrow Either statement contradicts $a=\sup A .(\rightarrow)$

