Online Math Camp (235) TA Session Notes (3/20)

Cardinality
How big is a set? (is magnitude)
If A is infinite, B is finite, then $A \backslash B$ is infinite.

If A is uncountable, $B \subseteq A$ is at most countable, then $A \backslash B$ is uncountable.

Proposition 1: (Countable Sets are the Smallest infinite sets)
A : infinite $\Rightarrow \exists A^{\prime} \subseteq A, A A^{\prime}$: countable.
(pf) Pick an element $a_{1} \in A$
Pick an element $a_{2} \in A \backslash\left\{a_{1}\right\}$
Since A is infinite, this procedure can go infinitely.
Hence, the set $\left\{a_{1}, a_{2}, \cdots, a_{n}, \cdots\right\}$ is countable.

Proposition 2 (Infinite subsets of countable sets are countable)
The subsets of countable sets is at most countable.
(pt) Since A is countable, $f: A \rightarrow \mathbb{N}$ is a bijection.
(sketch) i,e. $A=\left\{a_{1}, a_{2}, \cdots, a_{n}, \cdots,\right\}$
Hence, $B \subseteq A \Rightarrow B=\left\{a_{n_{1}}, a_{n_{2}}, \cdots\right\}$ is countable (bijection).

Proposition 3 Countable union of countable sets is countable.
(pf)

$$
\begin{aligned}
& A_{1}=\left\{a / 1, a_{12}, \ldots, a_{14}^{\ell}, \cdots\right\} \\
& A_{2}=\left\{a_{21}, a_{22}, \cdots, a_{2 n}, \cdots\right\} \\
& A_{3}=\left\{a_{2}, a_{32}, \cdots, a_{33}, \cdots\right\}
\end{aligned} \quad \Rightarrow \bigcup_{i=1}^{\infty} A_{i}=\left\{a_{11}, a_{12}, a_{21}, a_{31},\right.
$$

Example: (1) $\bigcup_{n \in \mathbb{N}}\{(m, n) \mid m \in \mathbb{Z}\}=\{(m, n) \mid m \in \mathbb{Z}, n \in \mathbb{N}\}$
(2) $\bigcup_{n \in \mathbb{N}}\left[0,1-\frac{1}{n}\right)=[0,1)$

Cor. Q is countable. greatest common denominator
(pf) Since Q can be viewed as $\{(m, n) \mid m \in \mathbb{Z}, g . c, d .(m, n) \in\{1,0\}\}$
Q is countable like the example above.

Proposition 4: $\quad(0,1)$ is uncountable.
(bf) If not, $f: \mathbb{N} \rightarrow(0,1)$ is a bijection.
Then, $1 \longmapsto 0 . a_{11} a_{12} a_{13} \cdots$

$$
\begin{aligned}
& 2 \longmapsto 0 . a_{21} a_{22} a_{23}- \\
& 3 \longmapsto 0 \\
& 3 \longmapsto
\end{aligned} a_{31} a_{32} a_{33} . .
$$

Consider the number $0, b_{1} b_{2} b_{3} \cdots$ where $b_{i}= \begin{cases}1 & \text { if } a_{i i}=0 \\ 0 & \text { if } a_{i i} \neq 0\end{cases}$
Then, $0, b_{1} b_{2} b_{3} \cdots$ is NOT in this bijection,
Corr. \mathbb{R} is uncountable.
(pf) Since $(0,1)$ is uncountable, $\mathbb{R} \geq(0,1)$ cannot be countable,

Metric Space
Def: (X, d) is a metric space if $(1) d(x, y) \geqslant 0$ ($"=$ " inf $x=y$)
(2) $d(x, y)=d(y, x)$
(3) $d(x, y)+d(y, z) \geqslant d(x, z)$

Example 1: $\left(\mathbb{R}^{2}, d\right)$, d : Euclidean
(pf) (1), (2) are trivial, (3) requires

$$
\begin{aligned}
& \sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}+\sqrt{\left(y_{1}-z_{1}\right)^{2}+\left(y_{2}-z_{2}\right)^{2}} \geqslant \sqrt{\left(x_{1}-z_{1}\right)^{2}+\left(x_{2}-z_{2}\right)^{2}} \\
& \Leftrightarrow \frac{\left(x_{1}-y_{1}\right)^{2}}{n}+\frac{\left(x_{2}-y_{2}\right)^{2}}{a_{1}} \\
& a_{2} \frac{\left(y_{1}-z_{1}\right)^{2}+}{11}+\frac{\left(y_{2}-z_{2}\right)^{2}}{a_{1}}+\frac{2 \sqrt{1} \cdot \sqrt{1}}{b_{2}} \geqslant\left(x_{1}-z_{1}\right)^{2}+\frac{\left(x_{2}-z_{2}\right)^{2}}{\sqrt{\left(a_{1}^{2}+a_{2}^{2}\right)}\left(b_{1}^{2}+b_{2}^{2}\right)}=\left(a_{1}+b_{2}\right)^{2} \\
&\left.\Rightarrow a_{1}^{2}+b_{1}\right)^{2}
\end{aligned}
$$

