Online Math Camp (235) TA Session Notes (3/20)

Proposition 1: (Countable Sets are the Smallost infinite sets)
A: infinite
$$\Rightarrow \exists A' \subseteq A, A': countable.$$

(pf) Pick an element ai $\in A$
Pick an element az $\in A \setminus \{a_i\}$
Since A is infinite, this procedure can go infinitely.
Hence, the set $\{g_1, g_2, \dots, g_n, \dots\}$ is countable.

$$\frac{Proposition 2}{The subsets of countable sets are countable}$$

$$\frac{Proposition 2}{The subsets of countable sets is at most countable}$$

$$\frac{Proposition 2}{The subsets of countable sets is at most countable}$$

$$\frac{Proposition 2}{The subsets of countable sets is at most countable}$$

$$\frac{Proposition 2}{The subsets of countable sets is at most countable}$$

$$\frac{Proposition 2}{The subsets of countable sets is at most countable}$$

$$\frac{Proposition 2}{The subsets of countable sets is at most countable}$$

$$\frac{Proposition 2}{The subsets of countable sets is at most countable}$$

$$\frac{Proposition 2}{The subsets of countable sets is at most countable}$$

$$\frac{Proposition 2}{The subsets of countable sets is at most countable}$$

$$\frac{Proposition 2}{The subsets of countable sets is at most countable}$$

$$\frac{Proposition 2}{The subsets of countable sets is at most countable}$$

$$\frac{Proposition 2}{The subsets of countable sets is at most countable}$$

$$\frac{Proposition 2}{The subsets of countable sets is at most countable}$$

$$\frac{Proposition 2}{The subset sets is a bijection}$$

$$\frac{Proposition 2}{Proposition sets of countable}$$

Metric Space
Def:
$$(X, d)$$
 is a metric space if $\bigcirc d(\pi, y) \ge 0$ ('=" iff $\pi \ge y$)
 $\bigcirc d(\pi, y) = d(y, x)$
 $\bigcirc d(\pi, y) + d(y, z) \ge d(x, z)$
Example 1: $(|R^2, d)$, d: Eucl. dean
(pt) \bigcirc , \bigcirc are trivial. \bigcirc requires
 $n(x_1 - y_1)^2 + (x_2 - y_2)^2 + n(y_1 - y_1)^2 + (y_2 - y_2)^2 \ge n(x_1 - y_1)^2 + (x_2 - y_2)^2$
 $\iff (x_1 - y_1)^2 + (x_1 - y_2)^2 + (y_1 - y_1)^2 + (y_2 - y_2)^2 \ge n(x_1 - y_1)^2 + (x_2 - y_2)^2$
 $\iff (x_1 - y_1)^2 + (x_1 - y_2)^2 + (y_1 - y_1)^2 + (y_2 - y_2)^2 \ge n(x_1 - y_1)^2 + (x_2 - y_2)^2$
 $\implies (x_1 - y_1)^2 + (x_1 - y_2)^2 + (y_1 - y_1)^2 + (y_2 - y_2)^2 + (y_1 - y_1)^2 + (y_1 - y_2)^2 + (y_1 - y_1)^2 + (y_2 - y_2)^2 + (y_1 - y_1)^2 + (y_1 - y_2)^2 + (y_1 - y_2)^2 + (y_1 - y_1)^2 + (y_1 - y_2)^2 + (y_1 - y_1)^2 + (y_1 - y_2)^2 + (y_1 - y_2)^2 + (y_1 - y_1)^2 + (y$