Online Math Camp ( 23 S)
TA Session Notes (3/20) (Quiz 4 Solution)

1. $(25 \mathrm{pts})$ Give formal definitions to the statement " $(X, d)$ is a metric space".
2. (25 pts) Let $X=[0, \infty)$. Is $d(x, y)=(\sqrt{x}-\sqrt{y})^{2}$ a metric on $X$ ? Prove or disprove.
(Sol) For $x=9, y=1, j=4, d(x, z)+d(z, y)=1+1<4=d(x, y)$ $(\rightarrow \leftarrow)$
$(S \rho l 2) d(x, z)+d(z, y)-d(x, y)$

$$
\begin{aligned}
& =(\sqrt{x}-\sqrt{z})^{2}+(\sqrt{z}-\sqrt{y})^{2}-(\sqrt{x}-\sqrt{y})^{2} \\
& =x 4 z-2 \sqrt{x z}+z+y-2 \sqrt{y z}-x x-y+2 \sqrt{x y} \\
& =2 z-2 \sqrt{x z}-2 \sqrt{y z}+2 \sqrt{x y}=2(\sqrt{z}-\sqrt{x})(\sqrt{z}-\sqrt{y})
\end{aligned}
$$

$>0$ iff $z>x, y$ or $z<x, y \quad(\rightarrow<)$
3. (15 pts each) Countable or Uncountable? Explain it in a few lines. (No need to be too rigorous, just to make sure you are not guessing.)
(i) The set of irrational numbers.
(ii) The set of infinite sequences with terms $=0$ or 1 .
(i) $\mathbb{R} \backslash Q:$ Since $\mathbb{R}$ is uncountable, $Q$ is countable,
$\Rightarrow \mathbb{R} \backslash Q$ is countable.
(ii) $S=\left\{x \mid x=\left(x_{1}, x_{2}, \cdots\right), x_{n} \in\{0,1\}, \forall n \in \mathbb{N}\right\}$

Suppose $\mathcal{S}$ is countable, then there exists bijection $f: \mathbb{N} \rightarrow \mathbb{S}$
Let $y=\left(y_{1}, y_{2}, \cdots, y_{n}, \cdots\right), y_{n} \in\{0,1\}, y_{h} \neq x_{n}^{n} \forall n \in \mathbb{N} .\left\{\begin{array}{l}f(1)=\left(x_{1}^{1}, x_{2}^{\prime}, \cdots x_{n}^{\prime}, \cdots\right) \\ f(2)=\left(x_{1}^{1}, x_{1}^{2}, \cdots, x_{n}^{2}, \cdots\right) \\ \vdots\end{array}\right)$ by our construction of $y_{n} \neq x_{n}^{n} \cdot(\rightarrow \leftarrow)$
4. (30 pts) Prove that $\left(\mathbb{R}^{n}, d\right)$ is a metric space for $n \in \mathbb{N}$, where $d$ denotes the Euclidean metric.
(Sol) $d(x, y)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}$.
(i) $\forall x, y \in \mathbb{R}^{n}, \quad d(x, y) \geqslant 0, \quad d(x, y)=0$ iff $x_{i}=y_{i} \forall i$
(ii) $d(x, y)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}=\sqrt{\sum_{i=1}^{n}\left(y_{i}-x_{i}\right)^{2}}=d(y, x)$.
(iii) $d(x, z)+d(z, y) \geqslant d(x, y)=$ RHS $\Rightarrow$ RH ${ }^{2}=\sum_{i}\left(x_{i}-y_{i}\right)^{2}$

$$
\begin{aligned}
& \frac{11}{} L H S=\sqrt{\sum\left(x_{i}-z_{i}\right)^{2}}+\sqrt{\sum\left(z_{i}-y_{i}\right)^{2}}=\sum_{i}\left(x_{i}-z_{i}\right)^{2}+\sum_{i}\left(z_{i}-y_{i}\right)^{2} \\
&+2 \sum\left(x_{i}-z_{i}\right)\left(z_{i}-y_{i}\right.
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow L H S^{2} & =\sum\left(x_{i}-j_{i}\right)^{2}+\sum\left(J_{i}-y_{i}\right)^{2}+2 \sqrt{\cdot \sqrt{ }} \geqslant \text { is } \\
& \geqslant \sum_{i}\left[\left(x_{i}-d_{i}\right)+\left(z_{i}-y_{i}\right)^{2}\right]=\sum_{i}\left(x_{i}-y_{i}\right)^{2}=R_{H S}
\end{aligned}
$$

5. (28 pts) Prove that the set of all polynomials

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

with integral coefficients is countable. Deduce the set of algebraic numbers is countable. (An algebraic number is a number which is a root of a polynomial with integral coefficients.)
(Sol) $P=\{$ polynomials with integral coefficients $\}$

$$
P_{n}=\{p \in P, \quad \operatorname{deg}(p) \leq n\} \Rightarrow p=\bigcup_{n \in \mathbb{N}} P_{n}
$$

Cl in: $P_{n} \simeq \mathbb{Z}^{n+1}$
(pf) $f: P_{n} \longrightarrow \mathbb{Z}^{n+1}$ is a bijection $a_{n} x^{n}+\cdots a_{i} x+a_{0} \mapsto\left(a_{n}, a_{n-1}, \cdots a_{0}\right)_{\neq y}$
Then, $P=\bigcup_{n \in \mathbb{N}} P_{n} \simeq \bigcup_{n \in \mathbb{N}} \mathbb{D}^{n+1}$ is countable.

$$
\{\text { algebraic numbers }\}=\bigcup_{p \in \frac{p}{\text { constable }}}^{\{\text {routs of } p\} \text { is countable. }} \text { at countable. }
$$

But, why $A \neq \bigcup_{n \in \mathbb{N}} A_{n}, A_{n}=\left\{0, a_{1}, a_{2} \ldots a_{n}, a_{i} \in\{0,1,2, \cdots, 9\}\right\}$,

$$
[0,1]
$$

$\Rightarrow$ Because $\frac{1}{3}=0.33 \cdots \underset{n \in \mathbb{N}}{ } A_{n}$ as all these have finite digits!!

Useful Tricks
Proposition 1: $A$ is uncountable, $B$ is countable.

$$
\Rightarrow|A \cup B|=|A| \text {. ie, } \exists \text { bijection } f: A \cup B \rightarrow A \text {. }
$$

(pf) Take $C \subseteq A$, countable.

$$
\begin{aligned}
\exists f_{1}: A \backslash C & \rightarrow A \backslash C, \text { bijection } \\
f_{2} & : B \cup C \longrightarrow B \quad, \text { bijection }
\end{aligned}
$$

$\Rightarrow$ Combine $f_{1} \& f_{2}$ to form $f(x)= \begin{cases}f_{1}(x) & \text { if } x \in A \backslash C \\ f_{2}(x) & \text { if } x \in B \cup C\end{cases}$
$\Rightarrow f$ is a bijection.
Homework: $A \geq B, A$ : uncountable, $B$ : countable Prove that $|A \backslash B|=|A|$.

Proposition 2 contains disjoint open intervals on $\mathbb{R}$, then $S$ is at most countable.

(pf) Since every interval contains a rational number, we can send intervals $s \in S$ to some $r \in Q \cap S$.

$$
\Rightarrow|S| \leq|Q|_{\#}
$$

Homeworks $D f: \mathbb{R} \rightarrow \mathbb{R}$ is monotone.
Prove that there are at most countable discontinuity. $8>\rho$
(2) Consider $E$, a set of " $8^{n}$ on $\mathbb{R}^{n}$ that do not overlap. Show that $E$ is at most countable.

