Online Math Camp (23s) TA Session Notes ($3 / 6$)

Construct \mathbb{R}
We "imagine" real numbers as a line

We know $\sqrt{2} \notin \mathbb{Q}$, so there are gaps in \mathbb{Q}.
So the goal is to fill these gaps...
We look at 2 ways;
(A] Dedekind Cut (Rudin way)
(B)Sup (Least Upper Bound) (More convenient way)
(A] Dedekind Cut

Intuition: If we cut a line into two parts, there must be a cutpoint.
Def: A cut (A, B) on set X is a pair pot set such that.
(1) $A, B \neq \phi, A \cup B=X(=\mathbb{Q}$, or \mathbb{R} actor it is constructed)
(2) $\exists a \in A, x \leq a \Rightarrow x \in A$. (A has upper bound a) $\exists b \in B, \quad \pi \geqslant b \Rightarrow x \in B \quad$ (B has lower hound b)
Axiom of Dedekind Cut (on \mathbb{R})
Exactly one the following holds: (1) max A exists, (2) min B exists.
Back to \mathbb{Q} (Problem of \mathbb{Q})
A cut on $\mathbb{Q}: A=\left\{x \in \mathbb{Q} \mid x^{2} \leqslant 2, x>0\right\} \cup\{x \in \mathbb{Q} \mid x \leqslant 0\}$

$$
B=\left\{x \in \mathbb{Q} \mid x^{2}>2\right\}
$$

Note: Neither max A, nor $\frac{\min B}{}$ exists in \mathbb{Q} (gap!)
(B) Sup (Least Upper Bound)

Intuition: $\xrightarrow{A}, r^{r} \ldots, r^{\prime} \ldots$
Def: $r=\sup A$ if $D r$ is a upper bound. i.e. $\forall a \in A, r>a$.
(2) $\forall r^{\prime}<r, \exists a \in A$ such that $r^{\prime}<a$

Least Upper Bound Property A set has LUB property if " $\forall S^{\prime} \leq\left\{, S^{\prime} \neq \phi, S^{\prime}\right.$ has a upper bound $\Rightarrow \sup S^{\prime} \in\{$ exists

Note: $\stackrel{\mathbb{R}}{ }$ has LUB property, but $\underline{\underline{Q}}$ does not.

We now prove 4 propositions related to the LUB property

Proposition: \mathbb{N} has no upper bound.
(pf) Suppose \mathbb{N} has a upper bound.
By LUB property of $\mathbb{R}, \sup \mathbb{N}=r$ exists,
Hence, $\exists r \in \mathbb{N}$ such that $n>r-1 \quad$ (since $r-1<r$ is not an upper bound)

$$
\Rightarrow h+1>r(\rightarrow \leftarrow)
$$

Proposition: (Archimedean Property) $\forall x, y>0, \exists n \in \mathbb{N}$ such that $n x>y$.
(pf) Suppose the property fails for some $\pi, y>0$?
$\Rightarrow y$ is an upper bound of $\{n x \mid n \in \mathbb{N}\}$
$\Rightarrow \sup \{n x \mid n \in \mathbb{N}\}=r$ exists
$\Rightarrow \exists n \in \mathbb{N}$, such that $n x>r-x$

$$
\Rightarrow(n+1) x>r(\rightarrow \leftarrow)
$$

Proposition: $\inf \left\{\left.\frac{1}{n} \right\rvert\, h \in \mathbb{N}\right\}=0$
(pf) Suppose $\inf \left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}=\varepsilon>0 \Rightarrow \forall n \in \mathbb{N}, \frac{1}{n} \geqslant \varepsilon$.
$\Rightarrow \forall n \in \mathbb{N} \quad n \leqslant \frac{1}{\varepsilon}$. i.e. \mathbb{N} has an upper hound. $(\rightarrow \leftarrow)$
Example $\left\{\left.\frac{n}{n+1} \right\rvert\, n \in \mathbb{N}\right\}=\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \cdots\right\}$ has $\sup =1, \quad$ inf $=\frac{1}{2}$.
Proposition: (Denseness of $\mathbb{Q}) \forall x, y \in \mathbb{R}, x<y \Rightarrow \exists q \in \mathbb{Q}$ such that $x<q<y$ (pt) (Intuition: Want to find $x<\frac{m}{n}<y \Leftrightarrow n x<m<n y \Leftrightarrow n(y-x)>1 \ldots$)

Pick $n \in \mathbb{N}$ such that $n(y-x)>1$.
Since $\exists m_{1}, m_{2} \in \mathbb{Z}$ such that $m_{2}<h x<m_{1}$, (\mathbb{N} has no upper bound

$$
\left.\begin{array}{l}
\sup \{k \in \mathbb{N} \mid k \leq n x\}=m-1 \text { exists. } \\
\Rightarrow m-1 \leq n x<m . \\
\Rightarrow n y>n x+1 \geqslant(m-1)+1=m
\end{array}\right\} \Rightarrow n x<m<n y \nRightarrow .
$$

$$
\Rightarrow \mathbb{Z} \text { has no lower or upper bound) }
$$

Useful Techniques:

1. To prove " $x=y$ ", prove instead: " $x \geqslant y$ " \& " $y \geqslant x$ "
2. To prove " $x \geqslant y$ ", prove instead: " $\forall n \in \mathbb{N}, x+\frac{1}{n}>y$ " $\Leftrightarrow y-x<\frac{1}{n} \forall n \in \mathbb{N}$

$$
\begin{aligned}
& \Leftrightarrow y-x \leq 0 \\
& \Leftrightarrow y \leq x
\end{aligned}
$$

