Online Math Camp (235) TA Session Notes (3/6)

Construct R
We "imagine" real numbers as a line _____
We know
$$\Sigma \notin \mathbb{Q}$$
, so there are gaps in Q.
So the goal is to fill these gaps...
We look at 2 ways;
A Dedekind Cut (Rudin way)
B Sup (Least Upper Bound) (More convenient way)

Proposition: N has no upper bound.
(pt) Suppose IN has a upper bound.
By LUB proposity of IR, sup
$$N = r$$
 exists.
Hence, $\exists n \in \mathbb{N}$ such that $n > r - 1$ (since $r - 1 < r$ is not an upper bound)
 $\Rightarrow n + 1 > r$ ($\rightarrow \leftarrow$)
Proposition: (Archimedean Property) $\forall x, y > 0$, $\exists n \in \mathbb{N}$ such that $nx > y$.
(pt) Suppose the property fails for some $\pi, y > 2$.
 $\Rightarrow y$ is an upper bound of $\{nx \mid n \in \mathbb{N}\}$
 $\Rightarrow up \{nx \mid n \in \mathbb{N}\} = r$ exists
 $\Rightarrow \exists n \in \mathbb{N}$, such that $nx > r - x$
 $\Rightarrow (n + 1)x > r (\rightarrow \leftarrow)$

v

Proposition: inf
$$\{\frac{1}{n} | n \in N\} = 0$$

(pf) suppose inf $\{\frac{1}{n} | n \in N\} = 2 > 0 \Rightarrow \forall n \in N, \frac{1}{n} > 2$.
 $\Rightarrow \forall n \in N \quad n \leq \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \cdots \}$ has an upper bound. (->e-)
Example $\{\frac{n}{n+1} | n \in N\} = \{\frac{1}{2}, \frac{1}{3}, \frac{3}{4}, \cdots \}$ has $\sup = 1$, $\inf = \frac{1}{2}$.
Proposition: (Denseness of Q) $\forall x, y \in IR, x < y \Rightarrow \exists g \in Q$ such that $x < q < y$
(pt) (Intuition: Went to find $x < \frac{m}{n} < y \Leftrightarrow nx < m < hy \Leftrightarrow n(y - x) > 1...)$
Pick $n \in IN$ such that $n(y - \pi) > 1$.
Since $\exists m_1, m_2 \in \mathbb{Z}$ such that $m_2 < hx < m_1$, (N has so upper bound
 $\sup \{k \in N \mid k \leq nx\} = m - 1 \in x > 155$.
 $\Rightarrow m - 1 \leq hx < m$.
 $\Rightarrow ny > nx + 1 \geq (m - 1) + 1 = m$

Useful Techniques:

1. To prove "
$$x=y$$
", prove instead: " $x \neq y$ " $g = y \neq x$
2. To prove " $x \neq y$, prove instead: " $\forall n \in \mathbb{N}$, $x + \frac{1}{n} > y$ " $\iff y - x < \frac{1}{n} \forall n \in \mathbb{N}$
 $\iff y - x \leq 0$
 $\iff y \leq x$