Online Math Camp (23\$)

TA Session Notes 7/20

$$\begin{array}{c} \text{Sets} \\ \hline \text{Example 1:} \quad & \leq, = \{\Delta, \bigcirc, \chi\} \quad & \leq, \cap S_2 = \{\chi\} \\ & \Rightarrow \quad & \leq, \cup S_2 = \{\chi, 0\} \\ \hline \text{Example 2:} \quad & \leq, = \{\pi \in \mathbb{R} \mid \chi > 0\} = \mathbb{R}_+ \quad & \mathbb{R}_+ \cap \mathbb{Z}_* = \{1, 2, 3, \cdots\} = \mathbb{N} \\ & \qquad & \leq 2 = \{\pi \mid \chi \text{ is an integer}\} = \mathbb{Z} \quad & \mathbb{Z} \setminus \mathbb{R}_+ = \{0, -1, -2, -3, \cdots\} \end{array}$$

Relation :Def: R is a relation on
$$S$$
 $S \times S = \{(a, b) \mid a \in S, b \in S\}$ Example: S: the set of all hyman beings $N \times N$: S $aRb: a$ is the father of b 1 $R = \{(a, b) \mid a \text{ is the father of } b\}$

Order (>)
A kind of relation:
(D a > b, b > c
$$\Rightarrow$$
 a > c (Transitivity)
(2) One & only one of the following holds: a > b, a = b, b > a (\equiv - f_{\pm})
Example:
(D' > " on R : ">= { (5,3), (π , o), -- }
(2) We say "X>Y" if (x < (\forall) = 1 ϑ) and π >o, \forall co" ("weird" order since ">" "
means smaller in absolute value

No Rational Number Satisfies
$$\chi^2 = 2$$

(pt) Lot $\chi^2 = 2$ and $\chi = Q$. $\Rightarrow \pi = \frac{P}{q}$ where $(P, g) = 1$, & $P, g \in \mathbb{Z}$
 $\Rightarrow \chi^2 = \frac{P^2}{q^2} = 2 \Rightarrow P^2 = 2g^2 \Rightarrow P$ is a multiple of 2 (i.e. even number)
Home, set $P = 2P'$, $P' \in \mathbb{Z} \Rightarrow P^2 = (2P')^2 = 2g^2 \Rightarrow 2P')^2 = g^2$
i.e. g is a multiple of 2. Contradiction to $(P, g) = 1$! (\times)
(pt) Alternatively, you can use $\# \notin I - \chi \boxtimes \chi^2 + 2 \boxtimes \chi^2$, from high school:
 \Rightarrow The possible trational roots for $\chi^2 = 2 = 0$ are $\pm 1, \pm 2$. (\times)

Rudin 1.14-1.16
Example 1: Prove
$$-(-\pi) = \chi$$
 (i.e., Rudin 1.14(d))
i.e., Since $\chi + (-\pi) = 0$ $\forall \pi$ and apply $+ (-\pi) = (-\pi) + (-(-\pi)) = 0$
(pf) $\chi + (-\pi) = 0$
 $(-\pi) + (-(-\pi)) = 0 = -(-\pi) + (-\pi)$ (since $\alpha + b = b + \infty$)
 $\Rightarrow \chi + (-\pi) + [-(-\pi)] = -(-\pi) + (-\pi) + [-(-\pi)]$ (all $[-(-\pi)] + 0$ both siders)
 $\Rightarrow \pi = -(-\pi)_{\#}$

Rudin 1.14 - 1.16
Example 2: Prove
$$-x = (-1) \cdot x$$
 Stratagy: Show that $(-x) + (-1) \cdot x = 0$
(pS) $x + (-1) \cdot x = [-x + (-1) \cdot x = [1 + (-1)] \cdot x = 0 \cdot x = 0$
So, if $0 \cdot x = 0$, we are done: $x + (-1) \cdot x = 0 = x + (-x)$
 $\Rightarrow (-1) \cdot x = -x$.
But why $0 \cdot x = 0$?
Because $x + 0 = x = [-x = (1 + 0) \cdot x]$ (since $1 = 1 + 0$)
 $= x + 0 - x$
 $\Rightarrow (+0 = \sqrt{+0} \cdot x)$
 $\Rightarrow (-1) \cdot x = -x$.