Introduction to Real Analysis, Final Exam

Total Score is 138. You can lose 2 points for free.

Problems (10 pts each)

- 1. Give formal definitions to the following statements.
 - (i) (X, d) is a metric space.
 - (ii) $f: X \to Y$ is uniformly continuous.
- 2. Countable or Uncountable? (Rigorous proofs are needed)
 - (i) The set of complex numbers \mathbb{C} .
 - (ii) The Cantor set.
 - (iii) The set of roots of integer-coefficient polynomials.
- 3. Calculate the following values.

(i)
$$\lim_{x \to 0} f(x, kx^2)$$
, where $f(x, y) = \frac{x^2 y}{x^4 + y^2}$. (ϵ - δ argument is needed.)
(ii) $\lim_{(x,y)\to(0,0)} f(x, y)$, where $f(x, y) = \frac{x^2 y}{x^4 + y^2}$.
(iii) $\frac{d}{dx} \frac{x \sin(x)}{x^2 + 3}$ at $x = 2$.

4. Prove that a Cauchy sequence that has a convergent subsequence is convergent.

- 5. Sketch open balls with radius 1 centered in the origin point in
 - (i) Euclidean metric.
 - (ii) Discrete metric, where $d(x, y) = 1, \forall x, y \in E$ if $x \neq y$.
 - (iii) d_1 metric, where $d_1((x_1, y_1), (x_2, y_2)) = |x_1 x_2| + |y_1 y_2|, \forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$.
- 6. Discuss the convergence of the following series.

(i)
$$\sum_{n} \frac{\sin n}{n^2}$$
.
(ii) $\sum_{n} \frac{n^2 z^n}{5^n}$ with different $z > 0$.

- 7. Prove that $f: X \to Y$ is continuous if and only if $f^{-1}(V)$ is open for every open set $V \subseteq Y$.
- 8. Prove that continuous function preserves compactness.
- 9. State and prove Intermediate Value Theorem.
- 10. Discuss which function sequence uniformly converges.

(i)
$$f_n(x) = x^n$$
 on $(0, 1)$.

- (ii) $f_n(x) = x^n(1-x)$ on (0,1).
- 11. Consider a person who faces a two-commodity market, say Commodity x and Commodity y. Suppose the utility function is not bounded above. Now, he wants to make a purchasing decision that makes his utility $\geq U$, where U is a positive constant. Show that there is a bundle that minimizes his cost.

Challenging Problems (Try to solve them to get A^+ , 10 pts each)

- 1. Suppose $\{a_n\} \in \mathbb{R}$ is bounded but not converges. Prove that there exists two subsequences of $\{a_n\}$ that converge to different limits.
- 2. We say that (M, d) is an ultrametric space if (M, d) is a metric space and

$$d(x, z) \le \max\{d(x, y), d(y, z)\}, \forall x, y, z \in M.$$

Prove that every triangle in an ultrametric space is isosceles and every open ball is closed. (Hint: An isosceles is a triangle with two sides of equal length.)

3. Let I be an interval. f is a continuous injection from I to \mathbb{R} . Prove that $f^{-1}: f(I) \to I$ is continuous.

Extremely Hard Problem (0pt, just in case you get bored.)

Suppose $f: M \to M$, where M is compact. Given that for each $x, y, d(f(x), f(y)) \ge d(x, y)$, prove that f is a surjection.