Introduction to Real Analysis, Quiz 9

1. Define " X is a complete metric space".

Solution. A metric space X is complete, if every Cauchy sequence converge to a point of X.
2. What are the limsup and liminf for the following sequences?
(i) $a_{n}=\frac{(-1)^{n}}{1+\frac{1}{n}}$

Solution. $\lim \sup \left\{a_{n}\right\}=1, \liminf \left\{a_{n}\right\}=-1$.
(ii) $a_{n}=\frac{1-2+3-4+\cdots+(-1)^{n-1} n}{n}$

Solution. $\lim \sup \left\{a_{n}\right\}=1 / 2, \lim \inf \left\{a_{n}\right\}=1 / 2$.
(iii) $a_{n}=\frac{n^{2}+4 n-3}{2 n^{2}+3 n+5}$

Solution. $\lim \inf =\limsup =1 / 2$.
3. Discuss if the following series converge or diverge.
(i) $\sum_{n=0}^{\infty} \frac{n}{2 n+1}$.

Solution. Diverge, since $\lim \frac{n}{2 n+1}=\frac{1}{2} \neq 0$.
(ii) $\sum_{n=0}^{\infty} \frac{1}{2^{\frac{n}{2}}}$

Solution. Converge, since $\sum_{n=0}^{\infty} \frac{1}{2^{\frac{n}{2}}}=\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{2}}\right)^{n}=\frac{1}{1-\frac{1}{\sqrt{2}}}$.
(iii) $\sum_{n=0}^{\infty} \frac{1}{n!}$

Solution. Converge, since $\sum_{n=0}^{\infty} \frac{1}{n!}<\sum_{n=0}^{\infty} \frac{1}{2^{n}}=2$. In fact, the limit is $\mathrm{e} \approx 2.7182$.
4. Say $\left|a_{n}\right|<1$ for all $n \in \mathbb{N}$. Prove that the series $\sum a_{n} x^{n}$ converges for all x with $|x|<1$.

Solution. Using the comparison test, $\left|a_{n}\right|<1$ for all $n \in \mathbb{N}$ implies that $\left|a_{n} x^{n}\right| \leq\left|x^{n}\right|$ for all $n \in \mathbb{N}$. And $\sum_{i=0}^{\infty}\left|x^{n}\right|=\sum_{i=0}^{\infty}|x|^{n}=\frac{1}{1-|x|}$ (converges). Therefore, $\sum a_{n} x^{n}$ converges.
5. Calculate

$$
\sum_{n=1}^{\infty} \frac{1}{n(n+2)(n+4)}
$$

Solution. First, observe that

$$
\frac{1}{n(n+2)(n+4)}=\frac{1}{8}\left(\frac{1}{n}-2 \frac{1}{n+2}+\frac{1}{n+4}\right) .
$$

Therefore,

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n(n+2)(n+4)} & =\sum_{n=1}^{\infty} \frac{1}{8}\left(\frac{1}{n}-2 \frac{1}{n+2}+\frac{1}{n+4}\right)=\frac{1}{8}\left(\sum_{n=1}^{\infty} \frac{1}{n}-2 \sum_{n=1}^{\infty} \frac{1}{n+2}+\sum_{n=1}^{\infty} \frac{1}{n+4}\right) \\
& =\frac{1}{8}\left(\sum_{n=1}^{\infty} \frac{1}{n}-2 \sum_{n=1}^{\infty} \frac{1}{n}+\sum_{n=1}^{\infty} \frac{1}{n}+(2+1)-\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\right) \\
& =\frac{1}{8}\left(3-\frac{25}{12}\right)=\frac{11}{96} .
\end{aligned}
$$

