Introduction to Real Analysis, Quiz 9

1. Define “X is a complete metric space”.

Solution. A metric space X is complete, if every Cauchy sequence converge to a point of

X.
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Solution. limsup{a,} = 1, liminf{a,} = —1.
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Solution. limsup{a,} = 1/2, liminf{a,} = 1/2.
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Solution. liminf = limsup = 1/2.

3. Discuss if the following series converge or diverge.
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Solution. Converge, since Z oF = Z <_2)
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What are the limsup and liminf for the following sequences?
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Solution. Converge, since Z — < on = 2. In fact, the limit is ex 2.7182. [
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4. Say |a,| < 1 for all n € N. Prove that the series Z a,z" converges for all z with |z| < 1.

Solution. Using the comparison test, |a,| < 1 for all n € N implies that |a,z"| < |z"| for all
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n e N. And Z |z"| = Z |x|" = 1_—|x|(converges). Therefore, Z a,x" converges. u
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5. Calculate

Solution. First, observe that
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