Introduction to Real Analysis, Quiz 7

Lan sean

April 16, 2023

1. Define " C is a connected set in the metric space X ".

Solution. C is connected if C is not an union of two non-empty separated sets. (Call A and B separated if $A \cap \bar{B}=\phi$ and $\bar{A} \cap B=\phi$.)
2. (a) State Heine-Borel theorem.

Solution. In \mathbb{R}^{n}, K is compact if and only if K is closed and bounded.
(b) Is ([a, b], d) compact where d denotes the discrete metric? Why you cannot use Heine-Borel in this case?

Solution. Consider the open covering $\left\{N_{1}(x): x \in[a, b]\right\}$ of $[a, b]$. Which has no finite subcover since $N_{1}(x)=\{x\}$.
We cannot use Heine-Boral theorem in this case because it is not Euclidean matric space.
3. Prove that if a set is compact, then every infinite subset has a limit point.

Solution. If not. Let S be the infinite subset of a compact set H and suppose S has no limit points. Since S has no limit point, $\forall p \in S, \exists N_{\epsilon_{p}}(p) \cap S=\{p\}$. Consider the open covering $\left\{H \backslash S, N_{\epsilon_{p}}(p), \forall p \in S\right\}$ of H, which has no finite subcover. Hence the statement is correct.
4. Show that the Cantor set is perfect, that is, closed and with no isolated point.

Solution. For closeness.
Let $F_{1}=[0,1], F_{2}=\left[0, \frac{1}{3}\right] \cap\left[\frac{2}{3}, 1\right], F_{3}=\left[0, \frac{1}{9}\right] \cap\left[\frac{2}{9}, \frac{1}{3}\right] \cap\left[\frac{2}{3}, \frac{7}{9}\right] \cap\left[\frac{8}{9}, 1\right], \ldots$
$F=\cup_{i=1}^{\infty} F_{i}$ is closed since F_{i} is closed for all i.
(no isolated point)
For $x \in F$, consider $(x-\epsilon, x+\epsilon) . \exists N \in \mathbb{N}$ such that $\frac{1}{3^{N}}<\epsilon$. Let $M=\max \left\{m: \frac{m}{3^{N}}<\right.$ $x, n \in \mathbb{N}\}$. We have $x \in\left[\frac{M}{3^{N}}, \frac{M+1}{3^{N}}\right] \subset(x-\epsilon, x+\epsilon)$. Now, removing $\left(\frac{3 M+1}{3^{N}}, \frac{3 M+2}{3^{N}}\right)$ from $\left[\frac{M}{3^{N}}, \frac{M+1}{3^{N}}\right]$. If $x \in\left[\frac{M}{3^{N}}, \frac{3 M+1}{3^{N}}\right], \exists c \in F$ such that $c \in\left[\frac{3 M+2}{3^{N}}, \frac{M+1}{3^{N}}\right]$. If $x \in$ $\left[\frac{3 M+2}{3^{N}}, \frac{M+1}{3^{N}}\right], \exists c \in F$ such that $c \in\left[\frac{M}{3^{N}}, \frac{3 M+1}{3^{N}}\right]$. Hence $(x-\epsilon, x+\epsilon) \cap F \backslash\{x\} \neq \phi$.
5. Prove that, if C is connected, then \bar{C} is also connected. How about the inverse?

Solution. Let $\bar{C}=A \cup B$ and $\bar{A} \cap B=A \cap \bar{B}=\phi$. We want to show either $A=\phi$ or $B=\phi . C=(A \cap C) \cup(B \cap C)$ and note that $A \cap C$ and $B \cap C$ are separated. Since C is connected, WLOG, suppose $A \cap C=\phi$ and thus $C \in B \cap C$, which implies $C \subset B$ and $\bar{C} \subset \bar{B} . A=A \cap(A \cup B)=A \cap \bar{C} \subset A \cap \bar{B}=\phi$.

The inverse is not true. Consider $C=[-1,1] \backslash\{0\} . \bar{C}=[-1,1]$ is connected, but C is not.

Extra. State and prove Heine-Borel theorem.

Solution. (Statement): In \mathbb{R}^{n}, K is compact if and only if K is closed and bounded. (Proof):

- If K is compact, we want to show K is closed and bounded. (Notably, this statement is always correct not only for \mathbb{R}^{n})

For K is bounded, consider an open cover $\left\{N_{n}(p)\right\}_{n=1}^{\infty}(p \in K)$. Since K is compact, there is a finite subcover $\left\{N_{n_{i}}(p)\right\}_{i=1}^{N}$. Hence $K \subset N_{n_{N}}(p), K$ is bounded.

For K is closed, we want to show that any point $p \notin K$ is not a limit point of K. For all point $q \in K$, let $U_{q}=N_{r / 2}(q), V_{q}=N_{r / 2}(p)$, where $r=d(p, q)$. $\left\{U_{q}\right\}_{q}$ is open cover of K. Since K is compact, there is a finite subcover $\left\{U_{q_{i}}\right\}_{i=1}^{N}$. Let $V=\cap_{i=1}^{N} V_{q_{i}}$. If $s \in V$, then $s \in V_{q_{i}}$ for all i and $s \notin K \subset U_{q_{i}}$ for all i. Hence $V \cap K=\phi, K$ is closed.

- If K is closed and bounded in \mathbb{R}^{n}.

The proof structure is: if we can show $[a, b]$ is compact, then sine K is bounded, we can find $K \subset[a, b]$ for some a, b. Moreover, we know that any closed subset of a compact set is compact (if you don't know, you'll know later) Therefore, K is a closed subset of a compact set $[a, b]$, which implies that K is compact.

First, show that $[a, b]$ is compact. Suppose not, let $\left\{G_{\alpha}\right\}$ be an open cover with no finite subcover. Then either $[a, c]$ or $[c, b]$ have no finite subcover. WLOG, let $[a, c]$ has no finite subcover. Repeat this method, we will get $I_{1}=[a, b] \supset I_{2}=[a, c] \supset \cdots$, and I_{i} has no finite subcover for all $i . \exists x^{*} \in I_{n}$ for all n (the existance of x^{*} can be show by proving $\sup \inf \left(I_{i} \mid \forall i\right) \in I_{i}$ for all i. Note that $x^{*} \in G_{\alpha_{0}}$ for some α_{0}. Since $G_{\alpha_{0}}$ is open, $\exists N_{\epsilon}\left(x^{*}\right) \subset G_{\alpha_{0}}$. $\exists I_{m}$ such that $I_{m} \subset N_{\epsilon}\left(x^{*}\right) \subset G_{\alpha_{0}}$. Contradict to G_{α} has no finite subcover to I_{m}.

Second, show that a closed set of a compact set is compact. $B \subset K \subset X$, where B is closed and K is compact. Let $\left\{G_{\alpha}\right\}$ be a open cover of B, $\left\{G_{\alpha}\right\} \cap B^{c}$ is an open cover of K. Since K is compact, $\left\{G_{\alpha_{i}}\right\}_{i=1}^{N} \cap B^{c}$ finite subcover of K. And since $B \subset K, B \subset\left\{G_{\alpha_{i}}\right\}_{i=1}^{N} \cap B^{c} \Longrightarrow B \subset\left\{G_{\alpha_{i}}\right\}_{i=1}^{N}$. Hence $\left\{G_{\alpha_{i}}\right\}$ is a finite subcover of B.

Finally, complete the proof. Since K is bounded, $\exists\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right] \supset K$. Since K is closed by assumption and $\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ is compact by the proof above, K is a closed subset of a compact set. Hence K is compact.

