Introduction to Real Analysis, Quiz 4

1. (25 pts) Give formal definitions to the statement " (X, d) is a metric space".
2. $(25 \mathrm{pts})$ Let $X=[0, \infty)$. Is $d(x, y)=(\sqrt{x}-\sqrt{y})^{2}$ a metric on X ? Prove or disprove.
3. (15 pts each) Countable or Uncountable? Explain it in a few lines. (No need to be too rigorous, just to make sure you are not guessing.)
(i) The set of irrational numbers.
(ii) The set of infinite sequences with terms $=0$ or 1 .
4. (30 pts) Prove that $\left(\mathbb{R}^{n}, d\right)$ is a metric space for $n \in \mathbb{N}$, where d denotes the Euclidean metric.
5. (28 pts) Prove that the set of all polynomials

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

with integral coefficients is countable. Deduce the set of algebraic numbers is countable. (An algebraic number is a number which is a root of a polynomial with integral coefficients.)

