
Introduction to Real Analysis, Quiz 3 answer key

1. State and prove the Cauchy-Schwarz inequality.

Solution. For a⃗, b⃗ ∈ Cn, ∣∣∣∣⟨⃗a, b⃗⟩∣∣∣∣2 ≤ ⟨⃗a, a⃗⟩⟨⃗b, b⃗⟩,

or ∣∣∣∣ n∑
j=1

aj b̄j

∣∣∣∣2 ≤ n∑
j=1

∣∣∣∣aj∣∣∣∣2 n∑
j=1

∣∣∣∣bj∣∣∣∣2.
The proof: For Cn, if b⃗ = 0, then it is done, else for any x ∈ C, consider the function

0 ≤ |⃗a− x⃗b|2 = ⟨⃗a− x⃗b⟩

= ⟨⃗a, a⃗⟩ − ⟨⃗a, x⃗b⟩ − ⟨x⃗b, a⃗⟩+ ⟨x⃗b, x⃗b⟩

= ⟨⃗a, a⃗⟩ − x̄⟨⃗a, b⃗⟩ − x⟨⃗b, a⃗⟩+ xx̄⟨⃗b, b⃗⟩

Now, we set x =
⟨⃗a, b⃗⟩
⟨⃗b, b⃗⟩

we will get

0 ≤ ⟨⃗a, a⃗⟩ − |⟨⃗a, b⃗⟩|2

⟨⃗b, b⃗⟩

=⇒
∣∣∣∣⟨⃗a, b⃗⟩∣∣∣∣2 ≤ ⟨⃗a, a⃗⟩⟨⃗b, b⃗⟩

Note that ⟨⃗b, a⃗⟩ = ⟨⃗a, b⃗⟩. ■

2. Let z1, z2 · · · , zn be complex numbers, prove that

|z1 + · · ·+ zn| ≤ |z1|+ · · ·+ |zn|

Hint. Use Induction and prove the base case as detailed as you can.
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Solution. Following the hint, we consider n = 2 first.

|z + w| =
√
(z + w) ¯(z + w)

=
√
zz̄ + wz̄ + zw̄ + ww̄

=
√

|z|2 + 2Re(zw) + |w|2

≤
√
|z|2 + 2|zw|+ |w|2

=
√
(|z|+ |w|)2

= |z|+ |w|.

Now, for the general n,

|z1 + · · · ,+zn| = |(z1 + (z2 + · · ·+ zn)|

≤ |z1|+ |z2 + · · ·+ zn|

= |z1|+ |z2 + (z3 + · · ·+ zn)|

≤ |z1|+ |z2|+ |z3 + · · ·+ zn|

≤ · · ·

≤ |z1|+ · · ·+ |zn|.

■

3. Prove the following statement, ”Principle of Induction ⇒ Well-Ordering Principle.”

Solution. Recall:

• Principle of Induction:

Let S be a subset if N, such that

– 1 ∈ S

– If k ∈ S, then k + 1 ∈ S.

Then S = N.

• Well-Ordering Principle: Any non-empty subset of N has a least element.

POI =⇒ WOP:

We prove by contradiction, assume S is a subset of N with no least element. We know that

1 ̸∈ S because S has no least element. Since 1 ̸∈ S, 2 ̸∈ S. By this argument, we get if a ̸∈ S

for all a ̸≤ k, then k + 1 ̸∈ S.

Now consider the set N \ S. We know the set satisfies the condition that

• 1 ∈ N \ S
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• If k ∈ N \ S, then k + 1 ∈ N \ S,

which implies N \ S = N and S is an empty set, contradicting that S is non-empty. Hence

the statement is correct. ■

4. Let z = a+ ib, w = u+ iv and z2 = w. Calculate a, b in terms of u, v. (Reminder. There are

two roots.)

Solution. Expand z2 and we get

z2 = (a+ bi)2 = a2 + 2abi− b2 = w = u+ vi

Solve the following two equations a2 − b2 = u

2ab = v

(a =
v

2b
) =⇒ (

v

2b
)2 − b2 = u

Solve the two equations and obtain

a2 =
u+

√
u2 + v2

2
, b2 =

−u+
√
u2 + v2

2
.

(Since a2, b2 are positive.) Hence the roots of a and b is: If v ≥ 0,

a = ±

√
u+

√
u2 + v2

2
, b = ±

√
−u+

√
u2 + v2

2

and if v ≤ 0,

a = ±

√
u+

√
u2 + v2

2
, b = ∓

√
−u+

√
u2 + v2

2
.

■

5. Suppose z is a complex number with |z| = 1, calculate

|1 + z|2 + |1− z|2,

and interpret it geometrically. (Hint. What is the geometric interpretation of |a− b|?)

Solution. Suppose z = a+ bi, |z| = 1 implies a2 + b2 = 1. Calculate

|1 + z|2 + |1− z|2 = |(a+ 1) + bi|2 + |(1− a)− bi|2

= (a+ 1)2 + b2 + (1− a)2 + (−b)2

= a2 + 2a+ 1 + b2 + 1− 2a+ a2 + b2

= 2(a2 + b2) + 2 = 4.
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The geometrical explain is that, z is on the unit circle of the complex plane, and |1 + z|2 +
|1− z|2 measures the distance squared between z and −1 plus the distance squared between

z and 1. And, by the common sense of right triangle, this value is always 4. ■
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