Introduction to Real Analysis, Quiz 3 answer key

1. State and prove the Cauchy-Schwarz inequality.

Solution. For $\vec{a}, \vec{b} \in \mathbb{C}^{n}$,

$$
|\langle\vec{a}, \vec{b}\rangle|^{2} \leq\langle\vec{a}, \vec{a}\rangle\langle\vec{b}, \vec{b}\rangle
$$

or

$$
\left|\sum_{j=1}^{n} a_{j} \bar{b}_{j}\right|^{2} \leq \sum_{j=1}^{n}\left|a_{j}\right|^{2} \sum_{j=1}^{n}\left|b_{j}\right|^{2}
$$

The proof: For \mathbb{C}^{n}, if $\vec{b}=0$, then it is done, else for any $x \in \mathbb{C}$, consider the function

$$
\begin{aligned}
0 \leq|\vec{a}-x \vec{b}|^{2} & =\langle\vec{a}-x \vec{b}\rangle \\
& =\langle\vec{a}, \vec{a}\rangle-\langle\vec{a}, x \vec{b}\rangle-\langle x \vec{b}, \vec{a}\rangle+\langle x \vec{b}, x \vec{b}\rangle \\
& =\langle\vec{a}, \vec{a}\rangle-\bar{x}\langle\vec{a}, \vec{b}\rangle-x\langle\vec{b}, \vec{a}\rangle+x \bar{x}\langle\vec{b}, \vec{b}\rangle
\end{aligned}
$$

Now, we set $x=\frac{\langle\vec{a}, \vec{b}\rangle}{\langle\vec{b}, \vec{b}\rangle}$ we will get

$$
\begin{array}{r}
0 \leq\langle\vec{a}, \vec{a}\rangle-\frac{|\langle\vec{a}, \vec{b}\rangle|^{2}}{\langle\vec{b}, \vec{b}\rangle} \\
\Longrightarrow|\langle\vec{a}, \vec{b}\rangle|^{2} \leq\langle\vec{a}, \vec{a}\rangle\langle\vec{b}, \vec{b}\rangle
\end{array}
$$

Note that $\langle\vec{b}, \vec{a}\rangle=\overline{\langle\vec{a}, \vec{b}\rangle}$.
2. Let $z_{1}, z_{2} \cdots, z_{n}$ be complex numbers, prove that

$$
\left|z_{1}+\cdots+z_{n}\right| \leq\left|z_{1}\right|+\cdots+\left|z_{n}\right|
$$

Hint. Use Induction and prove the base case as detailed as you can.

Solution. Following the hint, we consider $n=2$ first.

$$
\begin{aligned}
|z+w| & =\sqrt{(z+w)(z \overline{+} w)} \\
& =\sqrt{z \bar{z}+w \bar{z}+z \bar{w}+w \bar{w}} \\
& =\sqrt{|z|^{2}+2 \operatorname{Re}(z w)+|w|^{2}} \\
& \leq \sqrt{|z|^{2}+2|z w|+|w|^{2}} \\
& =\sqrt{(|z|+|w|)^{2}} \\
& =|z|+|w| .
\end{aligned}
$$

Now, for the general n,

$$
\begin{aligned}
\left|z_{1}+\cdots,+z_{n}\right| & =\mid\left(z_{1}+\left(z_{2}+\cdots+z_{n}\right) \mid\right. \\
& \leq\left|z_{1}\right|+\left|z_{2}+\cdots+z_{n}\right| \\
& =\left|z_{1}\right|+\left|z_{2}+\left(z_{3}+\cdots+z_{n}\right)\right| \\
& \leq\left|z_{1}\right|+\left|z_{2}\right|+\left|z_{3}+\cdots+z_{n}\right| \\
& \leq \cdots \\
& \leq\left|z_{1}\right|+\cdots+\left|z_{n}\right| .
\end{aligned}
$$

3. Prove the following statement, "Principle of Induction \Rightarrow Well-Ordering Principle."

Solution. Recall:

- Principle of Induction:

Let S be a subset if \mathbb{N}, such that
$-1 \in S$

- If $k \in S$, then $k+1 \in S$.

Then $S=\mathbb{N}$.

- Well-Ordering Principle: Any non-empty subset of \mathbb{N} has a least element.
$\mathrm{POI} \Longrightarrow$ WOP:
We prove by contradiction, assume S is a subset of \mathbb{N} with no least element. We know that $1 \notin S$ because S has no least element. Since $1 \notin S, 2 \notin S$. By this argument, we get if $a \notin S$ for all $a \not \leq k$, then $k+1 \notin S$.
Now consider the set $\mathbb{N} \backslash S$. We know the set satisfies the condition that
- $1 \in \mathbb{N} \backslash S$
- If $k \in \mathbb{N} \backslash S$, then $k+1 \in \mathbb{N} \backslash S$,
which implies $\mathbb{N} \backslash S=\mathbb{N}$ and S is an empty set, contradicting that S is non-empty. Hence the statement is correct.

4. Let $z=a+i b, w=u+i v$ and $z^{2}=w$. Calculate a, b in terms of u, v. (Reminder. There are two roots.)

Solution. Expand z^{2} and we get

$$
z^{2}=(a+b i)^{2}=a^{2}+2 a b i-b^{2}=w=u+v i
$$

Solve the following two equations

$$
\begin{gathered}
\left\{\begin{array}{l}
a^{2}-b^{2}=u \\
2 a b=v
\end{array}\right. \\
\left(a=\frac{v}{2 b}\right) \Longrightarrow\left(\frac{v}{2 b}\right)^{2}-b^{2}=u
\end{gathered}
$$

Solve the two equations and obtain

$$
a^{2}=\frac{u+\sqrt{u^{2}+v^{2}}}{2}, b^{2}=\frac{-u+\sqrt{u^{2}+v^{2}}}{2}
$$

(Since a^{2}, b^{2} are positive.) Hence the roots of a and b is: If $v \geq 0$,

$$
a= \pm \sqrt{\frac{u+\sqrt{u^{2}+v^{2}}}{2}}, b= \pm \sqrt{\frac{-u+\sqrt{u^{2}+v^{2}}}{2}}
$$

and if $v \leq 0$,

$$
a= \pm \sqrt{\frac{u+\sqrt{u^{2}+v^{2}}}{2}}, b=\mp \sqrt{\frac{-u+\sqrt{u^{2}+v^{2}}}{2}} .
$$

5. Suppose z is a complex number with $|z|=1$, calculate

$$
|1+z|^{2}+|1-z|^{2}
$$

and interpret it geometrically. (Hint. What is the geometric interpretation of $|a-b|$?)
Solution. Suppose $z=a+b i,|z|=1$ implies $a^{2}+b^{2}=1$. Calculate

$$
\begin{aligned}
|1+z|^{2}+|1-z|^{2} & =|(a+1)+b i|^{2}+|(1-a)-b i|^{2} \\
& =(a+1)^{2}+b^{2}+(1-a)^{2}+(-b)^{2} \\
& =a^{2}+2 a+1+b^{2}+1-2 a+a^{2}+b^{2} \\
& =2\left(a^{2}+b^{2}\right)+2=4
\end{aligned}
$$

The geometrical explain is that, z is on the unit circle of the complex plane, and $|1+z|^{2}+$ $|1-z|^{2}$ measures the distance squared between z and -1 plus the distance squared between z and 1 . And, by the common sense of right triangle, this value is always 4 .

