Introduction to Real Analysis, Quiz 3

1. (30 pts) State and prove the Cauchy-Schwarz inequality.
2. (30 pts) Let $z_{1}, z_{2} \cdots, z_{n}$ be complex numbers, prove that

$$
\left|z_{1}+\cdots+z_{n}\right| \leq\left|z_{1}\right|+\cdots+\left|z_{n}\right|
$$

(Hint. Use Induction and prove the base case as detailed as you can.)
3. (27 pts) Prove the following statement, "Principle of Induction \Rightarrow Well-Ordering Principle."
4. (27 pts) Let $z=a+i b, w=u+i v$ and $z^{2}=w$. Calculate a, b in terms of u, v. (Reminder. There are two roots.)
5. (24 pts) Suppose z is a complex number with $|z|=1$, calculate

$$
|1+z|^{2}+|1-z|^{2}
$$

and interpret it geometrically. (Hint. What is the geometric interpretation of $|a-b|$?)

