Introduction to Real Analysis, Quiz 2

1. (30 pts, 15 pts each) Give formal definitions to the following statements.
(i) a is the least upper bound of the set $S \subset \mathbb{R}$.
(ii) $S \subset \mathbb{R}$ satisfies the least upper bound property.
2. (30 pts, 15 pts each) Let $A=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$. What are $\sup A, \inf A$?
3. (30 pts) For $E \subseteq \mathbb{R}$, prove that

$$
\inf E=-\sup (-E)
$$

4. Let $a>1$. We assume that $a^{1 / n}$ is already a well-defined notion in the following context for $n \in \mathbb{N}$, which denotes the unique positive solution of $x^{n}=a$.
(i) (14 pts) If m, n, p, q are integers, $n>0, q>0$, and $r=m / n=p / q$, prove that

$$
\left(a^{m}\right)^{\frac{1}{n}}=\left(a^{p}\right)^{\frac{1}{q}} .
$$

(ii) (10 pts) Prove that $a^{r+s}=a^{r} a^{s}$ if r and s are rational.
(iii) (14 pts) If x is real, define $A(x)$ to be the set of all numbers a^{t}, where t is rational and $t \leq x$. Prove that

$$
a^{r}=\sup A(r)
$$

when r is rational. Hence it makes sense to define

$$
a^{x}=\sup A(x)
$$

for every real x.
(iv) (10 pts) Prove that $a^{x} a^{y}=a^{x+y}$ for all $x, y \in \mathbb{R}$.

