Quiz 11 Answer Key

1. State the Intermediate Value Theorem.

Solution. If $f:[a, b] \rightarrow \mathbb{R}$ is continuous and $f(a)<c<f(b)$, then there exists x such that $f(x)=c$.
(proof). Since $[a, b]$ is connected and f is continuous, $f([a, b])$ is connected. Therefore, if we cannot find x such that $f(x)=c$, then the sets $[\inf f([a, b]), c)$ and $(c, \sup f([a, b])]$ separate $f([a, b])$, which would be a contradiction.
2. Let $f: X \rightarrow Y$ be a continuous function between two metric spaces. Prove that $f^{-1}(F)$ is closed in X if F is closed in Y.

Solution. We know that f is continuous if and only if, for all open set \mathcal{U} in $Y, f^{-1}(\mathcal{U})$ is open in X. Therefore, if F is closed in Y, then F^{c} is open in Y, we have $f^{-1}\left(F^{c}\right)=\left(f^{-1}(F)\right)^{c}$ is open in X. Hence $f^{-1}(F)$ is closed in X.
3. Let $f: X \rightarrow Y, g: Y \rightarrow Z$ be continuous functions between metric spaces. Show that $g \circ f$ is continuous.

Solution. Again, note that f is continuous if and only if, for all open set \mathcal{U} in $Y, f^{-1}(\mathcal{U})$ is open in X. Therefore, for any open set \mathcal{V} in $Z, g^{-1}(\mathcal{V})$ is open in Y since g is continuous. Consequently, $f^{-1}\left(g^{-1}(\mathcal{V})\right)$ is open in X since f is continuous. And we now have, for any open set \mathcal{V} in $Z, f^{-1}\left(g^{-1}(\mathcal{V})\right)=(g \circ f)^{-1}(\mathcal{V})$ is open in X. Hence $g \circ f$ is continuous.
4. Describe "continuous function preserves compactness" formally and prove it.

Solution. The function $f: X \rightarrow Y$ is continuous and X is compact, then $f(X)$ is compact. (proof). Let $\left\{\mathcal{V}_{\alpha}\right\}$ be an open covering of $f(X)$. Let $\left\{\mathcal{U}_{\alpha}\right\}=\left\{f^{-1}\left(\mathcal{V}_{\alpha}\right)\right\}$, which is an open covering of X since f is continuous. Since X is compact, there exists a finite subcovering $\mathcal{U}_{\alpha_{1}}, \ldots, \mathcal{U}_{\alpha_{n}}$. Then $\mathcal{V}_{\alpha_{1}}, \ldots, \mathcal{V}_{\alpha_{n}}$ cover $f(X)$. Hence $f(X)$ is compact.
5. Let $f, g: X \rightarrow Y$ be two continuous functions. Suppose that $g(x)=f(x)$ for $x \in E$, where E is dense in X. Prove that $g(x)=f(x)$ for all $x \in X$.

Solution. Let $h(x)=f(x)-g(x)$ be a continuous function such that $h(x)=0$ for $x \in E$. By the definition of continuity, $\forall \epsilon>0, \exists \delta>0$ such that $d(x, y)<\delta$ would imply $d(f(x), f(y))<$ ϵ. Now, if there is a point y such that $h(y) \neq 0$, we say $d(h(y), 0)=c$. Let $\epsilon=c / 2$, for every $\delta>0$, there exist some point $x \in N_{\delta}(y)$ and x is also in E since E is dense in X, then $d(h(y), h(x))=d(h(y), 0)=c>\epsilon$. That would result in a contradiction. Hence $h(x)=0$ for all $x \in X$, which implies $f(x)=g(x)$ for all $x \in X$.

