24: The Derivative and the Mean Value Theorem

DIFFERENTIATION
Def. A function $f:[a, b] \rightarrow \mathbb{R}$
is differentiable at $x \in[a, b]$
if this limit exists

$$
f^{\prime}(x)=\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x} \quad \begin{aligned}
& t \in(a, b) \\
& t \neq x
\end{aligned}
$$

$\uparrow_{\text {The derivative of }} f$ of x.

(Q): If f cont on $[a, b]$
is f diff' on $[a, b]$?
NO
If f diff' on $[a, b]$
is f conti on $[a, b]$?
YES

why ?: $\lim _{t \rightarrow x} f(t)-f(x)=\lim _{t \rightarrow x} \frac{f(t)-f(x)}{t-x} \cdot(t-x)=f^{\prime}(x) \cdot 0=0$ ر
f^{\prime} doesn't always satisfy IV P
Q): If f is diff' on $[a, b]$, must f^{\prime} be conti $?<f^{\prime}$ hat no simple dis sonti.

NO

$$
f(x)=\left\{\begin{array}{cl}
x^{4 / 3} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\
0 & \text { if } x=0
\end{array}\right.
$$

$\overbrace{14}^{f(x)}$

- Call a function f a e^{\prime} function.
if f^{\prime} exists and is conti.
e^{k}-function" if $k^{\text {th }}$ den $f^{(k)}$ exists and is conti.
e^{0}-function is conto.
C^{∞} : all den. exist
- If f^{\prime} is limit, then sum,$\frac{\text { prod }}{\hat{\rho}}$, quotent rules follow.

$$
(f+g)^{\prime}=f^{\prime}+g^{\prime} \quad(f g)^{\prime}=f^{\prime} g+f g^{\prime}
$$

Let $h=f g$.

Thy: There exists function $\mathbb{R} \rightarrow \mathbb{R}$ that are continuous everywhere, but differentiable nowhere.

Here's one: $f(x)=\sum^{\infty} b^{n} \cos \left(a^{n} \pi x\right) \quad 0<b<1$
$a:$ odd $\in \mathbb{Z}$
$a b>1+\frac{3 \pi}{2}$

The Mean Value The.
If f is conti on $[a, b]$, diff on (a, b), then \exists point $\in(a, b)$ s.t.

$$
f(b)-f(a)=(b-a) \cdot f^{\prime}(c)
$$

- connects value of f to value of f^{\prime}

Ex (app) If $f^{\prime}(x)>0$ for all $x \in(a, b)$, then show $f(b)>f(a)$
(pf): $f(b)-f(a)=(b-a) \cdot f^{\prime}(c)>0$.
proof (1) If h on $[a, b]$ has local maximum at $c \in[a, b]$ and $h^{\prime}(c)$ exists $\Rightarrow h^{\prime}(c)=0$

(2) Generalized MVT. If $f(x), g(x)$ cont on $[a, b]$
then $\exists c \in(a, b) \quad$ diff' on (a, b)
s.t. $[f(b)-f(a)] g^{\prime}(c)=[g(b)-g(a)] f^{\prime}(c)$.
(If $g(x)=x$, get $\mu \nu T$)
idea :

LHS is rate that L swaps out area.
RHS is rate that K sweeps out area.

$$
h(x)=[f(b)-f(a)] g(x)-[g(b)-g(a)] f(x) .
$$

difference ${ }^{\prime}$ dear: $h(a)=h(b)=0$.

$$
\begin{gathered}
\text { of area } \\
\text { ser } \\
\text { tare } x .
\end{gathered} \text { so }(1) \rightarrow \exists c \text { s.t. } h^{\prime}(c)=0 \text {. But } h^{\prime}(x)=\text { LHS-RHS. \#. }
$$

