23: Discontinuous Functions

DISCONTINUOUS FUNCTIONS.

Dirichlet function.

$$
f(x)= \begin{cases}1, & x \in \mathbb{R} \\ 0, & \text { otherwise }\end{cases}
$$

f is not continuous at any P.
$E_{x}(H w) . f(x)=\left\{\begin{array}{lll}\frac{1}{q} & \text { if } & x=P / q \text { least form. } \\ 0 & \text { if } & x \notin \mathbb{Q} .\end{array}\right.$

dis continuous at all rationals.
continuous at all irrationals.

DIS CONTINUITY

$$
f:(a, b) \rightarrow R
$$

Note: for all $\left\{t_{n}\right\}$ in (x, b).
with $t_{n} \rightarrow x$, has $f\left(t_{n}\right) \rightarrow q$.
Write $f\left(x^{+}\right)=q$.
or $\lim _{t \rightarrow x^{+}} f(t)=q$
Similarly, say $f\left(x^{-}\right)=q^{\prime}$ or $\lim _{t \rightarrow x^{-}} f(t)=q^{\prime}$

$$
\lim _{t \rightarrow x} f(t) \text { exists } \Leftrightarrow f\left(x^{+}\right)=f\left(x^{-}\right)
$$

$f(x), f(x)$.
If f is dissonti, but they exist, say f has discontinuity of first kind. Else, second kind.
$2^{\text {nd }}$ kind: at $x=0$.

$$
f(x)= \begin{cases}0 & \text { if } x \leq 0 \\ \sin \left(\frac{1}{x}\right) & \text { if } x>0\end{cases}
$$

Ex: any discontinuity of Dirichlet function is $2^{\text {nd }}$ kind
Ex: $1 / q$-Dir. func., all discontinuity is $1^{\text {st }}$ kind. "simple".

Ex $f(x)= \begin{cases}x^{2} & \text { if } x \in \mathbb{Q} . \\ 0 & \text { if } x \in \mathbb{Q} .\end{cases}$

is contiat 0 .
and disconti, are all $2^{\text {nd }}$ kind.

MONOTONE FUNCTIONS.
f : munotondy increasing if $x \leq y \Rightarrow f(x) \leq f(y)$.
decreasing if $x \leq y \Rightarrow f(x) \geq f(y)$.

Thy : f mono. increasing in $(a, b) \Rightarrow f\left(x^{+}\right), f\left(x^{-}\right)$exist $\forall x, y \in(a, b)$. In fact $\sup _{t \in(0, x)} f(t) \leq f(x) \leq \inf _{t \in(x, b)} f(t)$.

call A
Claim $A=f\left(x^{-}\right)$
Given $\varepsilon>0$, consider $A-\varepsilon$

$$
\exists \delta \quad \text { s.t. } A-\varepsilon<f(x-\delta) \leq A . \quad(\text { since } A \text { is sup). }
$$

but then any $t \in(x-\delta, x)$. must satisfy $f(x-\delta) \leq f(t) \leq A$
so $f(t) e(A-\varepsilon, A)$ as derived.
Similar arg. on other side.

Cor Mon-func. have no disconti of $2^{\text {nd }}$ kind.

Thy: f mon on (a, b)
set of pts where f is not cont is countable.
pf: $\forall x$ where f is disconti:
pick $r(x) \in \mathbb{Q}$ sit. $f\left(x^{-}\right)<r(x)<f\left(x^{+}\right)$
If $x, y \in D, r(x) \neq r(y)$. b/c f mon.
Get $1-1$ ar between D and subset of $Q \not \equiv$.

