22: Uniform Continuity

UNIFORM CONTINUITY.

Def: Call $f: X \rightarrow Y$ uniformly continuous on X if $\forall \varepsilon>0, \exists \delta>0$ st.
$\forall x$ and p in $x, d(x, p)<\delta \Rightarrow d(f(x), f(p))<\varepsilon$. (same δ works for all p in X.)

The: $f: X \rightarrow Y$ cont, X copt, then f is uniformly conti on X
(pf): Given $\varepsilon>0$ [Goal: find a δ that works for all p].
Each pt x has δ_{x} ball s.t. $d(y, x)<\delta \Rightarrow d(f(y), f(x)<\varepsilon$
These cover X.
$Q:[\operatorname{Can} 1$ find δ s.t. if $d(p, q)<\delta$, then p, q are in the same carer set?]
For them $d(f(p), f(y))<d(f(p), f(x))+d(f(q), f(x))$.
Lebesgue covering lemma: If $\left\{U_{\alpha}\right\}$ is open cover of opt X.
then $\exists \delta>0$ s.t. $\forall x \in \mathcal{X}, B_{\delta}(x)$ is contained in some U_{α}
(pf): Since $X{ }_{c p t}, \exists$ finite subcover $\left\{u_{\alpha i}\right\}_{i=1}^{n}$
If K closed, define $d(x, k)=\inf _{y \in k} d(x, y)$
claim: $d(\lambda, k)$ is cont function of x (show).
Thm $f(x)=\frac{1}{n} \sum_{i=1}^{n} d\left(x, u_{\alpha i}^{e}\right)$ is cont fun on copt set,
so it attains its \min value δ.
So if $f(x) \geq \delta$, then at least one of $d\left(x, u_{d i}^{c}\right) \geq \delta$, so for this $i, B_{\delta}(x) \subset U_{d i} \neq 1$.
Note: $\delta>0$, since $f(x)>0$ at each x, since $u_{d i}$ are open cover.

Thm : $f: X \rightarrow Y$ cont, E connected in X, then $f(E)$ is connected.
(pf) Suppose $f(E)$ is not conn, then $f(E)=A \cup B$ a separated union.
Note $K_{A}=f^{-1}(\bar{A})$, are closed (since $f:$ cont)

$$
K_{B}=f^{-1}(\bar{B})
$$

Let $\left.\begin{array}{rl}E_{1} & =f^{-1}(A) \cap E \\ E_{2} & =f^{-1}(B) \cap E\end{array}\right\}$ disjoint, non- empty.
$E_{1} \subset K_{A}$ closed, so $\bar{E}_{1} \subset K_{A}$
$E_{2} \subset K_{B}$ dosed. so $\bar{E}_{2} \subset K_{B}$
\& $K_{A} \cap E_{2}=\phi$
$\left(\begin{array}{l}\| \prime \prime \\ f^{-1}(\bar{A})\end{array} f^{-1}(B), \& A \cap B=\phi\right)$
similarly, $K_{B} \cap E_{1}=\phi$
So E is seperated $*$.

The: Intermediate Value The
If $f:[a, b] \rightarrow \mathbb{R}$ conti, $\& f(a)<c<f(b)$
then $\exists x \in(a, b)$ s.t. $f(x)=c$
pf, $[a, b]$ conn $\Rightarrow f([a, b])$ conn.
but if c is not achieved, then " c would disconnect" $f([a, b])$.

Converse false: $f(x)=\left\{\begin{array}{cl}0, & x=0 \\ \sin \left(\frac{1}{x}\right), & x \neq 0\end{array}\right.$
not conn, but sat's IV pup.

